Light emitting device based on indirect-bandgap materials

Active solid-state devices (e.g. – transistors – solid-state diode – Incoherent light emitter structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S082000, C257S086000, C257S093000, C257S103000

Reexamination Certificate

active

06881977

ABSTRACT:
This invention regards to novel light emitting device based on indirect bandgap materials. This device makes efficient electroluminescence possible in indirect-bandgap materials. With the quantum mechanically tunneling effect and carrier confinement, and/or small-scale roughness (in nano-meter range), and/or special (TO) phonon-assisted processes, the additional momentum required for radiative recombination of electrons and holes in indirect-bandgap materials could be provided to enhance luminescence at bandgap energy. Also, the tunneled carriers in the upper bands of large energy could directly transit to the bottom of bands by emitting photons at corresponding energy different from bandgap energy.

REFERENCES:
patent: 5475698 (1995-12-01), Cho
patent: 5625729 (1997-04-01), Brown
patent: 5705047 (1998-01-01), Lee
patent: 6157047 (2000-12-01), Fujita et al.
Wang, Hai-Dan, Lu, Yong-Feng, Mai, Zhi-Hong and Ren, Zhong-Min, “Nano-scale Morphology and Crystallography of Laser-Deposited TiN Thin Films,” Jpn. J. Appl. Phys. vol. 39, pp. 6268-6271, (Nov. 11, 2000).
Zhu, X. D., “Fabrication of nano-structural arrays by channeling pulsed atomic beams through pulsed-laser standing-waves under off-resonant condition,” Applied Physics Letters, vol. 74 (No. 4), pp. 525-527, (1999).
Prioli, R., Reigada, D.C., and Freire, Jr., F.L., “Correlation between nano-scale friction and wear of boron carbide films deposited by dc-magnetron sputtering,” Appl. Phys. Lett., vol. 75 (No. 9), pp. 1317-1319, (Aug. 30, 1999).
Hu, Ziaoming, von Blanckenhagen, P., “Generation and analysis of nano-scale A 1 islands by STM,” Applied Physics A, S707-S710, (1998).
Sharma, P.K., Jilavi, M.H., Varadan, V.K., Schmidt, H. , “Influence of initial pH on the particle size and fluorescence properties of the nano scale Eu(III) doped yttria,” Journal of Physics and Chemistry of Solids, pp. 171-177, (2001).
L.T. Canham, “Silicon quantum wire array fabrication by electrochemanical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, vol. 57 (No. 10), pp. 1046-1048, (Sep. 3, 1990).
Nobuyoshi Koshida and Hideki Koyama , “Visible electroluminescence from porous silicon,” Appl. Phys. Lett., vol. 60 (No. 3), pp. 347-349, (Jan. 20, 1992).
S. Lazarouk, P. Jaguiro, S. Katsouba, G. Masini, S. La Monica, G. Maiello, and A. Ferrari, “Stable electroluminescence from reverse biased n-type porous silicon-aluminum Schottky junction device.,” Appl. Phys. Lett., vol. 68 (No. 15), pp. 2108-2110, (Apr. 8, 1996).
H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “um luminescence of erbium-implanted III-V semiconductors and silicon.,” Appl. Phys. Lett., vol. 43 (No. 10), pp. 943-945, (Nov. 15, 1983).
G. Franzo, F. Priolo, S. Coffa, A. Polman, A. Carnera, “Room-temperature electroluminescence from Er-doped crystalline Si,” Appl. Phys. Lett., vol. 64 (No. 17), pp. 2235-2237, (Apr. 25, 1994).
Morito Matsuoka and Shun-Ichi Tohno, “Electroluminescence of erbium-doped silocon films as grown by ion beam epitaxy,” Appl. Phys. Lett., vol. 71 (No. 1), pp. 96-98, (Jul. 7, 1997).
Liang-Sheng Liao, Xi-Mao Bao, Xiang-Qin Zheng, Ning-Sheng Li, and Nai Ben Min, “Blue luminescence from Si+-implanted SiO2 films thrmally grown on crystalline silicon,” Appl. Phys. Lett., vol. 68 (No. 6), pp. 850-852, (Feb. 5, 1996).
W. Skorupa, R.A. Yankov, I. E. Tyschenko, H. Frob, T. Bohme, and K. Leo, “Room-temperature, short-wavelength (400-500 nm) photoluminescence from silicon-implanted silicon dioxide films.,” Appl. Phys. Lett., vol. 68 (No. 17), pp. 2410-2412, (Apr. 22, 1996).
S. Oguz, William Paul, T.F. Deutsch, B-Y. Tsaur, and D. V. Murphy, “Synthesis of metastable, semiconducting Ge-Sn alloys by pulsed UV laser crystallization,” Appl. Phys. Lett., vol. 43 (No. 9), pp. 848-850, (Nov. 1, 1983).
S. Schuppler, Sl.L. Friedman, M.A. Marcus, D.L. Adler, Y.-H. Xie, F. M. Ross, Y.J. Chabal, T.D. Harris, L.E. Brus, W.L. Brown, E.E. Chaban, P.F. Szajowski, S.B. Christman, and P.H. Citrin “Size, shape and composition of luminescent species in oxidized Sinanocrystals and H-passivated porous Si.,” The American Physical Society, vol. 52 (vol. 7), pp. 4910-4925, (Aug. 15, 1995).
David B. Geohegan, Alex A. Puretzky, Gerd Duscher, and Stephen J. Pennycook, “Photoluminescence from gas-suspended SiOx nanoparticles synthesized by laser ablation,” American Institute of Physics, vol. 73 (No. 4), pp. 438-440, (Jul. 27, 1998).
F. Buda, J. Kohanoff, and M. Parrinello, “Optical Properties of Porous Silicon: A First-Principles Study,” The American Physical Society, vol. 69 (No. 8), pp. 1272-1275, (Aug. 24, 1992).
D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti and A. B. Holmes, “Conjugated polymer light-emitting diodes on silicon substrates,” Appl. Phys. Lett., vol. 65 (No. 21), p. 2636-2638, (Nov. 21, 1994).
A. J., Steckl and R. Birkhahn, “Visible emission from Er-doped GaN grown by solid source molecular beam epitaxy,” American Institute of Physics, vol. 73 (No. 12), pp. 1700-1702, (Sep. 21, 1998).
M. Garter, J. Scofield, R. Birkhahn, and A.J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si,” American Institute of Physics, vol. 74 (No. 2), pp. 182-184, (Jan. 11, 1999).
Zhanghua Wu, Tomonobu, Nakayama, Shan Qiao, and Masakazu Aono., “Strong linear polarization in scanning tunneling microscopy-induced luminescence from porous silicon”, American Institute of Physics, vol. 74 (No. 25), pp. 3842-3844, (Jun. 21, 1999).
C.W. Liu, J.C. Sturm, Y.R.J. Lacroix, M.L.W. Thewalt, and D. D. Perovic., “Growth and Photoluminescence of Strained <110> Si/Si1-xGex/Si Quantum Wells Grown By Rapid Thermal Chemical Vapor Deposition,” Mat. Res. Soc. Symp. Proc., vol. 342, pp. 37-42, (1994).
A. St. Amour, C.W. Liu, J.C. Sturm, Y. Lacroix and M.L.W. Thewalt., “Defect-free band edge photoluminescence and band gap measurement of pseudomorphic Si1-x-yGexCy alloy layers on Si (100),” Appl. Phys. Lett., vol. 67 (No. 26), pp. 3915-3917, (Dec. 25, 1995).
C.W. Liu, J.C. Sturm, Y.R.J. Lacroix, M.L.W. Thewalt, and D.D. Perovic., “Growth and band gap of strained <110> Si1-xGex layers on silicon subtrates by chemical vapor deposition,” Appl. Phys. Lett., vol. 65 (No. 1), pp. 76-78, (Jul. 4, 1994).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Light emitting device based on indirect-bandgap materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Light emitting device based on indirect-bandgap materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light emitting device based on indirect-bandgap materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3407613

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.