Light-emitting device and production thereof

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S794000

Reexamination Certificate

active

06642618

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a light-emitting device, termed a white LED, comprising a semiconductor light-emitting element light source, and a fluorescent material that receives output light therefrom and that emits fluorescent light of a different wavelength than this output light, the light from the light-emitting element and the light from the fluorescent material being combined to produce white light.
BACKGROUND
A number of white LEDs—light-emitting devices that use semiconductor lightemitting elements to produce white light—have been proposed to date. The use of semiconductor light-emitting elements affords relatively intense light with low electrical power consumption. Further, unlike incandescent bulbs or fluorescent lights, such devices to not radiate heat, and do not experience problems such as deterioration with time or burning out. Applications for such devices are thus expanding rapidly. Japanese Patent No. 2927279 discloses a technique for producing a white LED using a semiconductor light-emitting element. This patent teaches combining blue light (output by a gallium nitride semiconductor element) with yellow light having a broad spectrum component (output by a YAG fluorescent material which is excited by blue light output) to produce white light. In this prior art, the white LED is produced by arranging the semiconductor element on a substrate and encapsulating it in a transparent resin containing YAG fluorescent material.
Light sources that use gallium nitride semiconductor elements have longer life than the incandescent bulbs and fluorescent lights currently used as light sources for illumination, and can be used for up to about 10 years.
However, the light-emitting devices disclosed to date employ a resin protective layer (molding) to protect the light-emitting diode, and this poses a number of problems. For example, where the protective layer is composed of a resin, water can penetrate in the course of service over several years, impairing operation of the light-emitting diode; or where the output light of the light-emitting diode is ultraviolet, the ultraviolet can eventually cause discoloration, reducing ability to transmit output light from the light-emitting diode, and substantially impairing light-emitting diode performance.
In another aspect, the YAG fluorescent material disclosed in the prior art emits a broad spectrum of light centered around yellow. However, color rendering is poor, as noted. With the aim of improving color rendering, the Applicant has proposed a light-emitting device that combines two fluorescent materials, a green-and a red-light emitting material. However, these fluorescent materials have poor moisture resistance, so moisture countermeasures are crucial. However, light-emitting device designs proposed to date do not afford adequate moisture permeability.
In view of the problems with resin light-emitting diode protective layers, Unexamined Patent Application (Kokai) 11-251640 and Unexamined Patent Application (Kokai) 11-204838 disclose protective layers for protecting light-emitting diodes. These Applications were proposed in view of the drawbacks of the resin light-emitting diode protective layer disclosed in the aforementioned patent, namely, susceptibility to permeation by moisture—i.e., poor environmental resistance—and discoloration with massive exposure to ultraviolet—i.e., poor ultraviolet resistance—, resulting in diminished transparence and impaired characteristics as a light-emitting diode, and teach encapsulating the light-emitting diode with sol-gel glass rather than with a resin protective layer.
However, the light-emitting devices disclosed in Unexamined Patent Application (Kokai) 11-251640 and Unexamined Patent Application (Kokai) 11-204838 have the following problems.
Where wire bonding is employed to provide reliable electrical contact of the light-emitting diode, encapsulating the light-emitting diode with sol-gel glass using the methods disclosed in the above publications poses the following potential problems.
Where wire bonding is employed to provide reliable electrical contact of the light-emitting diode with an outside power supply, the wires from the light-emitting diode must pass through both glass and epoxy in order to connect with the leads outside the light-emitting diode. However, as the glass and epoxy resin have different qualities, such as coefficients of thermal expansion and hygroscopicity, significant stresses may be created within wires at the glass-epoxy interface, possibly severing the wires. Where sol-gel glass is used, volume shrinks by about 30% during hardening, so breakage resulting from stresses created in the wire can occur during molding as well. Thus, where wire bonding is employed to provide reliable conduction paths, differences in physical properties at the glass layer/epoxy cap interface can result in the problem of wire breakage.
In short, with light-emitting devices employing semiconductor light-emitting elements, while the semiconductor elements per se have high reliability and extended life, the packaging used to protect the semiconductor light-emitting element and ensure electrical contact with an outside power supply tends to experience problems in terms of reliability.
While it would be possible to address this problem by using a thicker glass layer to create the interface, it is difficult to produce thick glass that is free of cracks.
SUMMARY
With the foregoing in view, it is an object of the present invention to provide highly reliable packaging for semiconductor light-emitting elements, and to thereby provide a light-emitting device employing a semiconductor light-emitting element that offers sustained high performance and extended service life.
This object herein is achieved through a semiconductor light-emitting device wherein a semiconductor light-emitting element flip-chip is electrically interconnected to terminals on a substrate, said device comprising: a light-emitting element consisting of a gallium nitride semiconductor element; and a glass layer arranged on the path of the light output by said light-emitting element and containing a fluorescent material for receiving said output light and producing converted light converted to a wavelength different from that of said output light; wherein said emitted light and said converted light are used to produce essentially white light.
In preferred practice, the substrate will be a printed board.
In a preferred embodiment, the fluorescent material will consist of two sulfur-containing compositions, each fluorescent material producing converted light of a different wavelength.
One of the two fluorescent materials may be SrS:Eu
2+
that emits red fluorescent light, with the other being (Sr, Ba, Ca)Ga
2
S
4
:Eu
2+
that emits green fluorescent light.
The green fluorescent material may consist of SrGa
2
S
4
:Eu
2+
. In a preferred embodiment, the glass layer containing the fluorescent material will have a thickness of 100 &mgr;m or less.
In a preferred embodiment, the glass layer will consist of SiO
2
containing at least one compound selected from the group consisting of PbO, Ga
2
O
3
, Bi
2
O
3
, CdO, ZnO, BaO, and Al
2
O
3
; or of SiO
2
substantially devoid thereof.
Glass layer composition may be manipulated by including compounds selected from PbO, Ga
2
O
3
, Bi
2
O
3
, CdO, ZnO, BaO, and Al
2
O
3
. The reason for doing this is as follows. Reflection occurs at the interface of the light-emitting element and the surrounding glass layer or other packaging material. The proportion of total reflection occurring is higher the greater the difference in refractive index. Total reflection results in light bouncing back and forth within the package so that the efficiency of light emission to the outside declines. Accordingly, it is desirable to minimize total reflection at interfaces through which light from the light-emitting element passes, so as to achieve efficient transmission of light from the light-emitting element to the air. In order to achieve this it is necessary to minimize

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Light-emitting device and production thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Light-emitting device and production thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light-emitting device and production thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3129257

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.