Light-emitting device and display device

Active solid-state devices (e.g. – transistors – solid-state diode – Non-single crystal – or recrystallized – semiconductor... – Field effect device in non-single crystal – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S059000, C257S359000, C257S079000, C257S081000, C257S089000

Reexamination Certificate

active

06605826

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a device (hereinafter referred to as a light-emitting device) that has an element (hereinafter referred to as a light-emitting element) where a thin film including a luminescent material is sandwiched between a pair of an anode electrode and a cathode electrode. In particular, the present invention relates to a light-emitting device whose light-emitting element includes a thin film (hereinafter referred to as a light-emitting layer) made of an electro-luminescent material (EL material). The present invention also relates to a display device that uses a substrate made of an organic resin material and, more particularly, to a display device where a pixel portion is formed on such a substrate using thin-film transistors and an EL material.
2. Description of the Related Art
Liquid crystal panels or EL materials applied to display devices may contribute to reduction in weight and thickness thereof in comparison with conventional CRTs. Therefore, attempts have been recently made to apply display devices using the liquid crystal panels or EL materials to various fields. Also, it has now become possible to connect portable telephones and personal digital assistants (PDAs) to the Internet, which leads to the dramatic increase in the amount of image information to be displayed thereon and creates increasing demand for high-definition color display devices.
Display devices used for such portable information terminals need to be reduced in weight and, for instance, portable telephones whose weights are below 70 g are now on the market. For the reduction in weight, almost all components, such as electronic components, housing, and batteries, of the portable information terminals are subjected to reengineering. For the further weight reduction, however, display devices need to be reduced in weight.
Display devices are produced using glass substrates in many cases, so that one conceivable method for weight reduction would be to reduce the thickness of the glass substrates. In this case, however, the glass substrates tend to be cracked and the shock resistance thereof is lowered. This becomes a serious hindrance to the application of display devices including such thin glass substrates to portable information terminals. To meet demand for weight reduction as well as shock resistance, the development of display devices using organic resin substrates (plastic substrates) is under consideration.
For instance, light-emitting devices that have light-emitting elements produced using EL materials are currently under development. Display devices whose pixel portions are formed using light-emitting elements are capable of emitting light by themselves and further do not require light sources, such as backlights, unlike liquid crystal display devices. As a result, such light-emitting elements are highly expected as an effective means for reducing weights as well as thickness of display devices.
The construction of a typical light-emitting element using an organic EL material is shown in FIG.
22
. In this drawing, an insulator
2201
, an anode
2202
, a light-emitting layer
2203
, and a cathode
2204
are laminated to form a light-emitting element
2200
.
Before being observed by an observer
2206
, light
2205
emitted from the light-emitting layer directly passes through the anode
2202
, or is reflected by the cathode
2204
and then passes through the anode
2202
. That is, the observer
2206
observes the light
2205
that and passes through the anode
2202
to be emitted in picture elements where the light-emitting layer
2203
performs light emission.
A light-emitting element is composed of two electrodes: an anode that injects holes into an organic compound layer including a light-emitting layer, and a cathode that injects electrons into the organic compound layer. The light-emitting element having this construction utilizes a phenomenon where light is emitted when the holes injected from the anode are recombined with the electrons injected from the cathode within the light-emitting layer. The organic compound layer including the light-emitting layer is degraded by various factors, such as heat, light, moisture, and oxygen. To prevent this degradation, an ordinary active matrix type light-emitting device is produced by forming light-emitting elements in a pixel portion after wiring and semiconductor elements are formed therein.
After the formation of the light-emitting element, a first substrate, on which the light-emitting element have been formed, and a second substrate for covering the light-emitting elements are laminated and sealed (packaged) using a sealing member. This construction prevents the light-emitting elements from being exposed to the outside air.
It should be noted here that in this specification, all layers provided between a cathode and an anode are collectively referred to as an organic compound layer. The organic compound layer has a well-known structure where, for instance, a hole injecting layer, a light-emitting layer, an electron transporting layer, and an electron injecting layer are laminated with each other. A predetermined voltage is applied to the organic compound layer by a pair of electrodes to cause the recombination of carriers, thereby causing light emission in the light-emitting layer.
The light-emitting element, however, has a problem as to durability and, in particular, to oxidation resistance. The cathode that injects electrons into the organic compound layer is ordinarily made of an alkaline metal or an alkaline earth metal having a low work function. It is well known that these metals tend to react with and water, thereby having low oxidation resistance. The oxidation of the cathode means that the material of the cathode loses electrons and is coated with an oxidation layer. The reduction in the number of electrons to be injected and the oxidation coat may reduce the amount of emitted light in brightness.
As described above, the electrode of the light-emitting element is easily oxidized with a considerably small amount of oxygen or moisture and therefore the light-emitting element is easily degraded. Various techniques have been developed to prevent the oxidation of the light-emitting element. For instance, the light-emitting element is sealed with a metal or glass that is impermeable to oxygen and moisture. Also, the light-emitting element is produced to have a resin lamination construction or is filled with nitrogen or an inert gas. Even if the light-emitting element is sealed with a metal or a resin, however, oxygen easily passes through small gaps and oxidizes the cathode and light-emitting layer. Also, moisture easily passes through the resin used to seal the light-emitting element in terms of the light-emitting element. This causes a problem in that areas (called dark spots) that do not emit light appear on a display screen and expand with the lapse of time, which makes the light-emitting element incapable of emitting light.
EL materials are capable of emitting blue light and thus it is possible to realize a full-color display device of a self-light emitting type with the materials. However, it is confirmed that organic light-emitting elements are degraded in various ways. This degradation prevents the actual use of the EL materials and a solution to this problem is urgently required. The dark spots are spot-shaped defects that do not emit light in the pixel portion and so degrade display quality. The dark spots are also defects that get worse over time. Even if the light-emitting element is not brought into operation, the number of the dark spots is increased by the existence of moisture. It is thought that the cause of the dark spots is the oxidation reaction of the cathode made of an alkaline metal. To prevent the occurrence of dark spots, a sealed space is filled with dryer gas or provided with a dryer agent, in which the light-emitting element is placed.
Also, the light-emitting element is vulnerable to heat that promotes oxidation. This means that there ar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Light-emitting device and display device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Light-emitting device and display device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light-emitting device and display device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3105679

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.