Measuring and testing – Testing of shock absorbing device
Reexamination Certificate
2000-11-30
2003-09-02
McCall, Eric S. (Department: 2855)
Measuring and testing
Testing of shock absorbing device
C073S122000, C033S288000, C033S336000
Reexamination Certificate
active
06612152
ABSTRACT:
TECHNICAL FIELD
This invention pertains to the field of vehicle lifts for servicing an automobile and/or for diagnosing and tuning the chassis of an automobile. The invention also pertains to the field of transporting automobiles in carrier vehicles, loading and unloading automobiles into and from carrier vehicles, and otherwise handling the automobiles. Within those fields, the invention is particularly concerned with transporting racing cars and preparing them for racing, but has application to other vehicles and situations as well, for example transporting antique and classic cars and handling and servicing them at their destination.
BACKGROUND ART
Automobile racing is an extremely popular sport and is becoming more so. In 1998 NASCAR alone had 17 of the 20 best-attended sports events in America, each with an attendance of over 100,000 spectators. Cable television coverage of these events has greatly enlarged the audience, which is continuing to expand by millions of viewers each year. Other types of automobile racing, for example, Grand Prix road racing, drag racing, and endurance racing, are also popular throughout the world. The U.S. retail market for products made specifically for racing has been estimated at $1.5 billion annually. Equally impressive is the number of actual participants in auto racing. It was recently estimated that at least 385,000 people competed in an organized automobile race at least once in 1998.
Teams and individuals who participate in auto racing vary greatly in terms of equipment sophistication, financial and personnel resources, driver skills, and support crew proficiency. While the larger and better-financed competitors receive most of the publicity, a far greater number receive little or no publicity. For many of these participants, responding to the varied challenges presented by the competition provides much of the motivation. If a team or individual is unable to compete one way, they must be resourceful enough to devise other ways to compete, while staying within their particular limitations as well as the rules.
One of these challenges is the efficient use of time and personnel at the track. This challenge is particularly demanding during a racing event or in on-site preparation for a racing event. It is also a factor in preparation and development of the automobile and driver in order to optimize their respective performances for future racing events, since “track time” is usually limited and costly. As best stated by Carroll Smith, “Nothing is ever in such short supply at a race track as time . . . . There is never enough time . . . . Time lost during practice or qualifying is lost forever and time wasted during a day of testing is expensive and frustrating. Especially at one of the $1,000 per day tracks”. (Tune to Win, 1978, page 161. Mr. Smith also authored Engineer to Win in 1984. Both books are incorporated herein by reference.)
Competing for track time are numerous procedures which require accessing and working on or inspecting the undercarriage of the racing car, often repeatedly and with unavoidable interruptions for test driving on the track. These procedures generally fall into three categories which are not mutually exclusive: chassis tuning, safety, and inspection.
Chassis tuning is essential, if the racing car is to even approach its maximum performance capabilities. While the car with the best chassis tuning may not always win the race, chassis tuning often determines the winner, will always determine the winner when other factors are equal, and almost always determine a loser if ignored. Examples of chassis tuning procedures are: diagnosing and correcting chassis binding; disconnecting linkages for front or rear anti-sway bars and exchanging an anti-sway bar (i.e., anti-roll bar or stabilizer bar) for one of a different torsion rate; determining that the rear end of the car is square to the chassis or at a desired offset (i.e., “stringing the car”), changing one or more springs, struts, or shock absorbers to ones with more desirable mechanical properties; setting the front and/or rear ride height; adjusting the front and/or rear camber to the desired degree setting; adjusting the front for camber gain and cross percentages of caster; adjusting the front and/or rear for toe-out or toe-in; adjusting for optimum bump steer; adjusting corner weights (e.g. by adjusting jack screws or wedges); adjusting for optimum Ackerman steering, if the car is so equipped; measuring and optimizing the scrub radius of tires; adjusting control devices for rear axle performance (e g., panhard bar or Watts link); adjusting rear torque arms; adjusting other devices relative to rear axle performance (e.g., to optimize anti-squat, anti-lift, and anti-dive characteristics, rear-steering characteristics, rear camber and rear toe-in); determining optimum weight distributions on each of the car's wheels (i.e., “scaling the car”). Chassis tuning frequently uses known alignment tools, for example, turn plates, caster/camber gages, toe-in devices, and devices for measuring linear distance. Chassis tuning is a process of balancing many interrelated variables to provide optimum handling characteristics and thus ultimate racing performance.
Safety procedures include the following: inspecting fasteners and tightening as necessary; inspecting for oil leaks, gas line leaks, shock absorber malfunctions and correcting as necessary; inspecting brake lines for signs of chafing or failure and correcting as necessary; inspecting brake pads and rotors and servicing as necessary; inspecting the flywheel scatter-shield device; inspecting the drive shaft safety hoop; inspecting for damage or undesirable changes resulting from a track incident.
Routine maintenance procedures include the following changing engine oil; inspecting and/or changing transmission lubricants; inspecting and/or changing final drive lubricants; checking and maintaining the integrity of the exhaust system.
Racing cars are transported to racing events and elsewhere by a variety of means. One such means is a tractor-trailer combination in which an enclosed, two-level trailer carries at least four cars. The cars are loaded and unloaded by an elevatable horizontal platform which is supported by two sets of diagonal chains at the rear of the trailer when in use and folds against the rear of the trailer when not in use. Such transporters are depicted in Old Car Trader, July 1998, pages Y-28 and Y-29, in the advertisements of VIP Transport, Inc. and Exotic Car Transport. We believe that these particular platforms fold about two hinges, in an arrangement similar to that shown by Erlinder U.S. Pat. No. 3,675,739 on a truck.
Also known are mobile lifts for servicing or transporting automobiles. See, for example, Grimaldo U.S. Pat. No. 3,931,895, Cray U.S. Pat. No. 4,445,665, Lapiolahti U.S. Pat. No. 4,750,856, and Wellman U.S. Pat. No. 5,810,544. An example of another, commercially available lift is depicted in Hemmings Motor News, September 1999 issue, page 8879, in an advertisement by Autolifters of America, Inc., Wichita, Kans.
Stationary lifts or grease pits are rarely, if ever, available for the use of contestants at a track. There are currently several methods of elevating racing cars at tracks so that they can be worked on and inspected. One such method utilizes a lever, for example a first class lever with a long handle at one end, a load-supporting surface at the other end, and in between a fulcrum which bears on the pavement. A second method involves four pressurized gas-actuated jacks which are mounted on the racing car itself. A third method consists of jacking up one side or end of the car at a time by one or more jacks which, though having a specialized and sophisticated design, operate much the same way as ordinary garage or vehicle-carried jacks. The first two methods are fast and are often used for raising a car several inches during a race for limited purposes, for example changing tires, but are not suitable for allowing working under the car for most purposes, because of obvious spa
Haulsee Donald R.
Keaton James E.
Kunka James L.
Keaton James E.
Lyne, Jr. Robert C.
McCall Eric S.
LandOfFree
Lifting, servicing, and diagnosing automobiles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Lifting, servicing, and diagnosing automobiles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lifting, servicing, and diagnosing automobiles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3093861