Telephonic communications – Emergency or alarm communications
Reexamination Certificate
2002-02-01
2003-12-02
Ramakrishnaiah, Melur (Department: 2643)
Telephonic communications
Emergency or alarm communications
C379S042000, C379S045000
Reexamination Certificate
active
06658091
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of security systems. More particularly, the present invention relates to a system and method for the remote monitoring of a premises from a location other than the premises.
2. Description of Related Art
Conventional security systems typically protect a building using make/break contacts strategically placed at doors, windows, and other potential entry points and motion sensors in strategic areas inside the building. Other devices include glass breakage detectors, panic or medical alert buttons, temperature and flood sensors, smoke detectors, and P.I.R. (passive infra red) sensors, a type of motion sensor that senses heat differences caused by animate objects such as humans or animals. Also used are vibration sensors which, when placed upon a window for example, detect when the window is broken, and radio frequency (rf), radar, and microwave sensors, as well as laser sensing. When the system is on and a sensor is tripped, a signal is sent through a wire, or using radio frequencies (on wireless systems), to a main controller which sounds a siren and dials out via telephone, an IP connection, or cellular service to the monitoring station whenever an alarm condition occurs.
One technological approach to determining whether or not an alarm condition exists is through the use of separate audio monitors operating in concert with separate alarm sensors. U.S. Pat. Nos. 4,591,834 and 4,918,717 are directed to such systems. For example, U.S. Pat. No. 4,591,834 refers to the use of miniature, low-frequency dynamic microphones. Alarm activities noted at the microphones are verified via a separate network of discriminator sensors which comprise geophones. Signal processing techniques are utilized to distinguish alarm activity. Intrusion and discriminator sensors are arranged in known patterns comprised of multiple sensors of each type. U.S. Pat. No. 4,918,717 refers to a system wherein a number of microphones are distributed about a secured premises in relation to other intrusion sensors. Upon detection of an intrusion alarm, the microphones can be manually enabled one at a time from the central station to allow an operator to listen to audio activity in proximity to the sensor alarm.
Another approach is the use of video images to monitor a location. In many prior art devices, however, the video images may not be received by the monitoring party until several moments have passed after the recorded event has actually taken place, likely causing any response to be late and less effective.
Another disadvantage with existing security systems is that after a person has left the premises, he or she may not be certain that he or she remembered to activate or arm the security system. In prior art systems, it has been necessary to return to the premises to arm the security system or ask someone else to check on the premises and report back to the person. Returning to the premises is time-consuming and inconvenient, and may not be possible if the person is traveling or is otherwise unable to return to the premises.
In addition, the owner of a premises may desire to monitor the premises or communicate with an occupant of the premises, whether or not an alarm has been triggered. One approach for remote monitoring or remote communication involves the use of web cams. A disadvantage to using web cams is that they fail to address privacy concerns by failing to inform or notify the occupant of the premises that remote surveillance is occurring. Instead, the attraction of web cams to consumers is the ability to spy on a location without individuals knowing the web cam is transmitting images of the premises.
Furthermore, the owner of the premises may desire to modify aspects of the security system while he or she is away from the premises. In many prior art systems, the owner is unable to modify certain aspects of the security system. Instead, the security system must be reconfigured by a representative of the security system manufacturer or a complex process using the keypad with limited user interface. It is therefore desirable for a user at a remote location to be capable of arming and disarming the security system, changing aspects of the security system, and generally having access to control the monitoring of the premises from the remote location.
Prior art systems generally do not provide for two-way audio communication. Two-way audio capabilities enable owners of the premises and monitoring personnel to communicate with individuals present at the premises, providing an extra means for determining the status of the premises (such as determining if an alarm event is actually occurring) and, in the case of a remote user communicating with the premises, the opportunity to maintain a sense of control of the premises (such as communicating with a child at the premises).
Prior art systems generally do not provide for hands-free communication by occupants of the premises with a remote user. In cases in which the occurrence of an alarm event has resulted in an occupant being injured or otherwise unable to operate the security system, the only option was to wait for someone to check on the premises and notify the proper authorities. Furthermore, prior art systems generally do not transmit images or sound during non-alarm periods. It is therefore desirable to provide a security system capable of transmitting images and sound during non-alarm time periods, and to further provide a way for individuals at a monitored location to communicate with users accessing the security system from a remote location, and without the need for acknowledging the remote user in order to communicate.
There is a desire to balance security, privacy, and convenience concerns, particularly with residential security systems. Many prior art security systems sacrifice security and lack convenience for the sake of privacy. It is therefore desirable to provide a security system that provides security of the premises, is configurable to address privacy concerns of the occupants, and is convenient for the users of the security system to access the system remotely.
SUMMARY OF THE INVENTION
From the foregoing, it can be appreciated that a need has arisen for a security system and method that overcomes the limitations of the prior art. It is desirable that such a security system provide the convenience of remote monitoring of a premises by a remote user, while simultaneously addressing privacy concerns by providing a notification signal to alert occupants of the premises that remote monitoring is occurring. It is further desirable that such a system use available infrastructure and protocols and overcome the limitations of conventional methods.
Accordingly, the present invention provides a method for remote monitoring of a premises, comprising the steps of operatively coupling a geographically remote client to a security system server which is capable of authenticating a user of the remote client, operatively coupling the remote client to a security gateway which is capable of managing the monitoring of the premises, activating a signal at the premises for notifying an occupant at the premises that remote monitoring is occurring, and transferring information between the security gateway and the remote client. The transfer of information between the security gateway and the remote client is controlled by the user of the remote client. The security gateway may be operably coupled to at least one camera and to at least one audio station.
The notification signal may comprise an audible signal or a visible signal or both. An audible notification signal may comprise a sound uniquely associated with the remote user, and can comprise speech, which may identify the remote user. A visible notification signal may comprise a depiction of the remote user, or a graphical image, or an alphanumeric message, which may identify the remote user, and which may be transmitted to a keypad at the premises. The visible notification signal may be transmitted to a
Feldkamp Gregory E.
Glasgow William P.
Naidoo Surendra N.
@Security Broadband Corp.
Conley & Rose, P.C.
Harkins Kristin Jordan
Ramakrishnaiah Melur
LandOfFree
LIfestyle multimedia security system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with LIfestyle multimedia security system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and LIfestyle multimedia security system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3103812