Leukemia associated genes

Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C536S024310, C536S024330

Reexamination Certificate

active

06271019

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to nucleic acid molecules and encoded polypeptides which are expressed preferentially in leukemia. The nucleic acid molecules and encoded polypeptides are useful in, inter alia, diagnostic and therapeutic contexts.
BACKGROUND OF THE INVENTION
The phenotypic changes which distinguish a tumor cell from its normal counterpart are often the result of one or more changes to the genome of the cell. The genes which are expressed in tumor cells, but not in normal counterparts, can be termed “tumor specific” genes. These tumor specific genes are markers for the tumor phenotype. The expression of tumor specific genes can also be an essential event in the process of tumorigenesis.
Typically, the host recognizes as foreign the tumor specific genes which are not expressed in normal non-tumorigenic cells. Thus, the expression of tumor specific genes can provoke an immune response against the tumor cells by the host. Tumor specific genes can also be expressed in normal cells within certain tissues without provoking an immune response. In such tissues, expression of the gene and/or presentation of an ordinarily immunologically recognizable fragment of the protein product on the cell surface may not provoke an immune response because the immune system does not “see” the cells inside these immunologically privileged tissues. Examples of immunologically privileged tissues include brain and testis.
The discovery of tumor specific expression of a gene provides a means of identifying a cell as a tumor cell. Diagnostic compounds can be based on the tumor specific gene, and used to determine the presence and location of tumor cells. Further, when the tumor specific gene contributes to an aspect of the tumor phenotype (e.g., unregulated growth or metastasis), the tumor specific gene can be used to provide therapeutics such as antisense nucleic acids which can reduce or substantially eliminate expression of that gene, thereby reducing or substantially eliminating the phenotypic aspect which depends on the expression of the particular tumor specific gene.
As previously noted, the polypeptide products of tumor specific genes can be the targets for host immune surveillance and provoke selection and expansion of one or more clones of cytotoxic T lymphocytes specific for the tumor specific gene product. Examples of this phenomenon include proteins and fragments thereof encoded by the MAGE family of genes, the tyrosinase gene, the Melan-A gene, the BAGE gene, the GAGE gene, the RAGE family of genes, the PRAME gene and the brain glycogen phosphorylase gene, as are detailed below. Thus, tumor specific expression of genes suggests that such genes can encode proteins which will be recognized by the immune system as foreign and thus provide a target for tumor rejection. Such genes encode “tumor rejection antigen precursors”, or TRAPs, which may be used to generate therapeutics for enhancement of the immune system response to tumors expressing such genes and proteins.
The process by which the mammalian immune system recognizes and reacts to foreign or alien materials is a complex one. An important facet of the system is the T cell response. This response requires that T cells recognize and interact with complexes of cell surface molecules, referred to as human leukocyte antigens (“HLA”), or major histocompatibility complexes (“MHCs”), and peptides. The peptides are derived from larger molecules which are processed by the cells which also present the HLA/MHC molecule. See in this regard Male et al.,
Advanced Immunology
(J.P. Lipincott Company, 1987), especially chapters 6-10. The interaction of T cells and complexes of HLA/peptide is restricted, requiring a T cell specific for a particular combination of an HLA molecule and a peptide. If a specific T cell is not present, there is no T cell response even if its partner complex is present. Similarly, there is no response if the specific complex is absent, but the T cell is present. The mechanism is involved in the immune system's response to foreign materials, in autoimmune pathologies, and in responses to cellular abnormalities. Much work has focused on the mechanisms by which proteins are processed into the HLA binding peptides. See, in this regard, Barinaga,
Science
257: 880, 1992; Fremont et al.,
Science
257: 919, 1992; Matsumura et al.,
Science
257: 927, 1992; Latron et al.,
Science
257: 964, 1992.
The mechanism by which T cells recognize cellular abnormalities has also been implicated in cancer. For example, in PCT application PCT/US92/04354, filed May 22, 1992, published on Nov. 26, 1992, and incorporated by reference, a family of genes is disclosed, which are processed into peptides which, in turn, are expressed on cell surfaces, which can lead to lysis of the tumor cells by specific CTLs. The genes are said to code for “tumor rejection antigen precursors” or “TRAP” molecules, and the peptides derived therefrom are referred to as “tumor rejection antigens” or “TRAs”. See Traversari et al.,
J. Exp. Med.
176:1453-1457, 1992; van der Bruggen et al.,
Science
254: 1643,1991; De Plaen et al.,
Immunogenetics
40:360-369, 1994 for further information on this family of genes. Also, see U.S. patent application Ser. No. 807,043, filed Dec. 12, 1991, now U.S. Pat. No. 5,342,774.
In U.S. patent application Ser. No. 938,334, now U.S. Pat. No. 5,405,940, the disclosure of which is incorporated by reference, nonapeptides are taught which are presented by the HLA-A 1 molecule. The reference teaches that given the known specificity of particular peptides for particular HLA molecules, one should expect a particular peptide to bind one HLA molecule, but not others. This is important, because different individuals possess different HLA phenotypes. As a result, while identification of a particular peptide as being a partner for a specific HLA molecule has diagnostic and therapeutic ramifications, these are only relevant for individuals with that particular HLA phenotype. There is a need for further work in the area, because cellular abnormalities are not restricted to one particular HLA phenotype, and targeted therapy requires some knowledge of the phenotype of the abnormal cells at issue.
In U.S. patent application Ser. No. 008,446, filed Jan. 22, 1993 and incorporated by reference, the fact that the MAGE-1 expression product is processed to a second is TRA is disclosed. This second TRA is presented by HLA-Cw16 molecules, also known as HLA-C*1601. The disclosure shows that a given TRAP can yield a plurality of TRAs.
In U.S. patent application Ser. No. 994,928, filed Dec. 22, 1992, and incorporated by reference herein, tyrosinase is described as a tumor rejection antigen precursor. This reference discloses that a molecule which is produced by some normal cells (e.g., melanocytes), is processed in tumor cells to yield a tumor rejection antigen that is presented by HLA-A2 molecules.
In U.S. patent application Ser. No. 08/032,978, now U.S. Pat. No. 5,620,886, and incorporated herein by reference in its entirety, a second TRA, not derived from tyrosinase is taught to be presented by HLA-A2 molecules. The TRA is derived from a TRAP, but is coded for by a known MAGE gene. This disclosure shows that a particular HLA molecule may present TRAs derived from different sources.
In U.S. patent application Ser. No. 079,110, now U.S. Pat. No. 5,571,711 and entitled “Isolated Nucleic Acid Molecules Coding For BAGE Tumor Rejection Antigen Precursors” and Ser. No. 196,630, filed Feb. 15, 1994, and entitled “Isolated Peptides Which form Complexes with MHC Molecule HLA-C-Clone 10 and Uses Thereof” the entire disclosures of which are incorporated herein by reference, an unrelated tumor rejection antigen precursor, the so-called “BAGE” precursor, is described. TRAs are derived from the TRAP and also are described. They form complexes with MHC molecule HLA-C-Clone 10.
In U.S. patent application Ser. No. 096,039, filed Jul. 22, 1993 and entitled “Isolated Nucleic Acid Molecules Coding for GAGE Tumor Rejection Antigen Precursors” and Ser.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Leukemia associated genes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Leukemia associated genes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Leukemia associated genes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2547460

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.