Lesion-directed dry dosage forms of antibacterial agents for...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S031000, C514S039000, C514S152000, C514S192000, C514S200000, C424S641000, C424S653000, C424S692000

Reexamination Certificate

active

06248718

ABSTRACT:

BACKGROUND OF THE INVENTION
Anatomically, the oral cavity is composed of two parts, the vestibule and the mouth cavity proper. The vestibule is limited by the reflections of the mucous membranes, also referred to as mucosa(e), from the lips and cheeks to the gums covering the upper and lower alveolar arches respectively. The mouth cavity proper is bounded laterally and ventrally by the alveolar arches with the their contained teeth; dorsally, it communicates with the pharynx. It is roofed in by the hard and soft palates, while the greater part of the floor is formed by the tongue, the remainder by the reflection of the mucosae from the sides and under surface of the tongue to the gum lining the inner aspect of the mandible. Gingiva(e), the gum, is composed of dense, fibrous tissue which is covered with vascular mucous membrane and connected to the periosteum on the edges of the alveolar processes of the mandible and maxilla. At the neck of the teeth, the fibrous tissue of the gingiva is continuous with the periosteum lining the alveoli. Except the teeth, the entire oral cavity is lines by mucosae with a squamous epithelium lining on the surface. Inflammation of the oral mucosae which may involve the buccal and labial mucosa, palate, tongue, floor of the mouth, and the gingivae, including the periodontal pockets is referred to as stomatitis.
The mucosae of the oral cavity are normally colonized by a large and diverse microbial flora. These bacteria are constantly interacting with the host and with each other in competition for survival. The number of microorganisms in 1 ml of human saliva swallowed is approximately 100 million. About 100 billion bacteria are produced in a human oral cavity in about one liter of saliva swallowed per day. There are over 200 different species of microorganisms that can be isolated from the oral cavity. But the composition of these so-called normal floras may change according to the environment and may differ from location to location in the mouth.
Certain genera, such as the Streptococcus, Actinomyces, Neisseria, and Bacteroides appear to be found in the oral cavity of all humans in high numbers. These are referred to as “indigenous flora.”
Some microbes, for example, Lactobacillus species,
Streptococcus mutans, Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans
, diphtheroids, Nocardia, fusiform bacilli and spirochetes are nearly always present, but in low numbers (less than 1%). These are referred to as “supplemental flora”, but may become indigenous if the environment changes.
“Transient flora” comprise organisms “just passing through” the host. They may be present in food or drink and may be established temporarily in the mouth, but normally cannot persist in the crowded oral environment, and quickly disappear. These include Enterobacteriaceae, Staphylococcus, yeasts, Candida and other fungi.
There normal floras usually exist in symbiotic and amphibiotic patterns in the mouth, and are normally saprophytic in nature. However, they are quite capable of assuming pathogenic tendencies, thus either precipitating or aggravating disease, and are referred to as opportunistic pathogens.
An intact oral mucosa is a definite barrier to bacterial invasion. However, should this shield be broken or penetrated, bacteria or their products may enter the underlying connective tissue and grow rapidly to infectious levels. Examination of the bacterial population in the various types of oral mucosal infections has not identified a single group of microbes which can be consistently associated with the diseases. Aerobic streptococci, facultative streptococci, numerous filamentous forms (e.g, Actinomyces), diphtheroids, Gram-negative diplococci (Neisseria), fusiform bacilli, spirochetes, and bacteroides have all been described in the lesions of various oral mucosal infections with or without a concomitant observable ulceration. Any single one of these microorganisms is probably not pathogenic when introduced alone into the healthy exposed underlying tissues not covered by an intact protective mucosa. But working in combination and growing in concert, they can cause and perpetuate serious tissue damages. During the acute inflammatory stage of the bacterial infection, a large number of bacterial endotoxins and exotoxins are released from the living or dead microbes. These toxins may cause increase in vascular permeability, increase in intravascular hydrostatic pressure, outward passage or plasma fluids, release of histamine, heparin and serotonin from the tissue mast cells, which further mediate vascular engorgement and diffusibility of fluid through the endothelium. The pathological changes associated with the acute inflammation almost invariably transform the infected part of the oral mucosa in to a beefy-red painful swelling with or without grossly observable ulceration or erosion. Regardless of the etiology which has caused the initial breakdown of the barrier of the intact oral mucosa, bacterial infection in the most important of all the local factors which may delay the normal healing and repair processes of the lesion.
Suppression or elimination of the bacterial population in an infected lesion is the most logical approach of treatment. However, since the microbes in the human mouth are highly complex in variety and very high in number and since the saliva contains numerous enzymes both of host origin and of bacterial origin which may destroy any anti-infective medicines introduced, systemic routes of administering antibacterial agents for the treatment of oral mucosal infections are generally not effective. Systemic administration of antibacterial agents by parenteral injections or by ingestion of the medicaments cannot bring about an effective bacteria-inhibiting concentration of the drug to the site of infection. In the current invention, the inventor introduces a topical dry-dosage form of antibacterial agent(s) to be used as a topical medication in form of a lozenge to bring about a “supratherapeutic” concentration of antibacterial agent(s) to the lesion of infection, to sterilize the local environment periodically four times a day. Under this topical medication, the pain associated with acute inflammation of the oral mucosa subsides in about 48 hours, and minor mucosal ulcers heal completely in about 4 days. Two clinical examples, namely recurrent minor aphthous stomatitis (also known as canker sores) and acute gingivitis (also known as acute periodontal inflammation) are useful illustrations of this approach to treatment of acute mucosal infections.
Small shallow painful mucosal ulcers of the mouth, commonly referred to as aphthous stomatitis, aphthous ulcers, canker ulcers or canker sores in the medical literature, occur in about 20-25% of the general human population and are not contagious. They often appear on the unkeratinized oral mucosal surface of the soft palate, the ventral or lateral tongue, the buccal-labial mucosa, and the floor of the mouth, and usually recur at irregular intervals with single or multiple lesions. They are often covered with a grayish white exudate and surrounded by a hyperemic or erythematous margin, and are highly sensitive, especially to acid food. The size of these ulcers is rarely more than 5 mm in diameter, but can be larger, and coalescence of multiple ulcers may occur. The pain caused by these ulcers may sometimes extend over the entire face. Small canker sores usually heal spontaneously in one to three weeks, but larger ulcers may require months to resolve, often with scarring.
Three main clinical presentations are recognized, namely, minor canker sores (recurrent aphthous stomatitis), major canker sores (recurrent aphthous stomatitis) and herpetiformn ulcers. Minor canker sores account for more than 80% of the recurrent aphthous stomatitis cases. The size of the minor canker ulcers is rarely more than 5 mm in diameter and heal within 10-14 days without scarring. Major canker sores are a rare severe form of recurrent aphthous stomatitis. These lesions are round or oval, may exceed 1 cm, and may approach

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lesion-directed dry dosage forms of antibacterial agents for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lesion-directed dry dosage forms of antibacterial agents for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lesion-directed dry dosage forms of antibacterial agents for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2534306

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.