Lentivirus from the group of immunodeficiency viruses of...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S235100, C530S324000, C530S826000

Reexamination Certificate

active

06566513

ABSTRACT:

The present invention relates to the immunodeficiency virus SIM27 of drill monkeys, whose RNA or a part thereof is complementary to the sequence shown below, and variants of this virus. Moreover, the viral RNA, the corresponding CDNA, proteins derived therefrom and fragments of the nucleic acids or proteins are a subject of the present invention. The invention likewise relates to the diagnostic use of the mentioned nucleic acids and proteins and their fragments, and a diagnostic comprising these nucleic acids and/or proteins and/or fragments thereof.
Primates have been developing for approximately 30 million years, which has lead to a high degree of variability of the individual primate species. The New World monkeys (Platyrrhini) are differentiated from the Old World monkeys (Catarrhini), which for their part are divided into the hominoids (Hominoidae) and the cercopithecoids (Cercopithecoidea). Together with the primates, various infective agents have also developed, which have adapted to the individual primate species or, for example, to a whole family. Examples of virus are the simian pathogenic and the human pathogenic herpesviruses, which although they can still infect individuals of another primate species, are naturally not transmitted from one primate species to the other. Other viruses still infect all primates, such as the rabies virus, the yellow fever virus and the filovirus.
Lentiviruses are subdivided into the genera of the spume viruses, the T-leukemia/lymphoma viruses and the immunodeficiency viruses. A general survey of the leukemia and immunodeficiency viruses of the monkeys and their pathogenicity is found in the article of Hayami (Hayami M et al., Curr. Top. Microbiol. Immunol. 1994; 188: 1-20). Spume viruses appear to occur only in monkeys. Since until now a pathogenicity of the spume viruses has not been detected, this virus is being less intensively investigated than HIV/SIV and HTLV/STLV.
HTLVs, the human T-leukemia viruses type I and type II, are structurally very similar to STLVs, the simian (monkey) T-lymphoma viruses (Franchini et al., AIDS Res Human Retrovirus 1994; 10: 1047-1060). Thus the difference in the virus species, STLV I and II, and the viruses between man (HTLV) and monkeys (STLV) is a sign of a long individual evolution in the individual primates, if a cross-transmission between the various primate species can be excluded (Franchini et al., AIDS Res Human Retrovirus 1994; 10: 1047-1060). STLV-infected monkeys occur over the entire world (Hayami M et al., Curr. Top. Microbiol. Immunol. 1994; 188: 1-20), whereas SIV-infected monkeys are only to be found naturally in Africa, which is an indication of the fact that SIV very probably developed later than STLV.
Molecular biology results show clearly that HIV-1 is very closely related to the immunodeficiency viruses of the chimpanzee. The latter viruses are subsequently designated as SIV-1, whereas the virus of the mangabeys, SIVsm, is designated as SIV-2. SIV-1 and HIV-1 derive with high probability from a precursor virus, just as SIV-2 and HIV-2 probably have a common precursor. Up to 25% of troops monkeys can naturally be infected with SIV-2 without signs of the virus pathogenesis being detectable in the infected animals (Chen Z et al., J Virol. 1996; 70: 3617-3627). In the case of SIV-2, infections in man were detected which do not differ in their pathogenesis from an HIV-2 infection. SIV-2 is closely related to HIV2 and particularly epidemically widespread in West Africa south of the Sahara, in the same region in which the mangabeys live (Gao FL et al., Nature 1992; 358: 495-499). The results of the investigations on SIV show that in addition to the SIV-2 (SIVsm) of mangabeys the immunodeficiency viruses of the African green meerkat represent a further type, perhaps SIV-3, and in addition meanwhile some further simian SIVs have been isolated which cannot be assigned to the groups of viruses mentioned and which probably represent the SIV type 4. This SIV-4 type is formed by the viruses of the Sykes monkeys (Cercopithecus mitis), the Hoest monkeys (Cercopithecus 1′hoesti) (Hirsch VM et al., J. Virol. 1999; 73: 1036-1045), the red cap mangabeys (Cercopithecus torquatus torquatus) (Georges-Courbot MC et al., J. Virol. 1998; 72: 600-608), the mandrill monkeys SIVmnd (Mandrillus sphinx) (Tsujimoto H et al., Nature 1989; 341: 539-541), and the drill monkeys (Mandrillus leucophaeus) (Clewley JP et al., J. Virol. 1998; 72: 10305-10309). All previously isolated SIV-4s can be cultured in human peripheral blood lymphocytes and some in the human permanent cell line Molt4 clone 8 (Hirsch VM et al., J. Virol. 1999; 73: 1036-1045), which indicates that the infection of man with these viruses should also be possible. The SIV-4 type is so different from the SIV-2 type that an SIVmac(SIV2)-specific p25 antigen test cannot detect SIVhoest (SIV4) produced in the supernatant of infected cells (Hirsch VM et al., J. Virol. 1999; 73: 1036-1045), as the Gag region is too divergent for recognition by monoclonal antibodies. The phylogenetic comparison of the nucleic acid sequences of the simian viruses also shows that the SIV-4 described here differs from SIV-2 and SIV-3 (Korber et al. Human Retroviruses and AIDS 1997. A compilation and analysis of nucleic acid and amino acid sequences. Los Alamos National Laboratory, New Mexico, 1998).
As described above, a virus similar to SIVcpz is possibly the precursor virus of viruses causing human HIV-1 infections, which the high similarity of viruses of the group HIV1-M, −N and −O to SIV-1 indicates.
To date, there are no reports that humans have been infected with SIV-4. A nosocomial infection with SIV-3 or SIV-2 occurred due to contamination of the eczematous skin of a laboratory assistant (Khabbaz RF et al., N. Engl. J. Med. 1994; 330: 172-177). The SIV replicated for a certain time which was sufficient for the induction of a strong antibody response, but was not sufficient to establish a permanent infection (Khabbaz RF et al., N. Engl. J. Med. 1994; 330: 172-177). About 3.5 years after seroconversion, the laboratory assistant appeared to be free of the infection (Khabbaz RF et al., N. Engl. J. Med. 1994; 330: 172-177). Whether this path of virus elimination is the rule or whether persistent infections with corresponding pathogenesis can also result from the infective event is unknown.
Since until now no epidemiological studies on target groups in central Africa have been carried out which can show whether variant viruses such as SIV-4 also circulate in the human population, infection of man cannot be confirmed, but can also not be excluded.
As was seen in the example of the HIV-1 subtype O, antibody detection tests on the basis of HIV-1 subtype M were not sufficiently reactive in order to be able to detect all subtype O-infected patients (Simon F et al. AIDS 1994; 8: 1628-1629). The diagnosis of an infection with an aberrant human pathogenic SIV subtype could probably also not be made, as it must be assumed that the ELISA exploratory tests based on HIV-1 and/or HIV-2 antigens are negative or would only be slightly reactive, and the attempt at confirmation by means of the immunoblot produced a negative or probably questionable result. The diagnosis could probably also not be made by means of the nucleic acid tests, since with the presently available tests, for example, neither the nucleic acid of the viruses of group O nor that of HIV-2 can be reliably amplified (Gürtler L et al., 12th World AIDS Conference Geneva Basic Science 1: 121-124).
The drill monkeys described here (
Mandrillus leucophaeus
) are animals which originate from the western region of Cameroon bordering Nigeria and live wild there in the bushland. Drill monkeys have become widespread in the central West-African region. The animals are hunted and eaten, which is why the stock in recent years has continuously decreased. Young animals are in some cases picked up and kept in the vicinity of the houses as pets. The monkey 27 described here (3 years old) was captured from a free hunting res

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lentivirus from the group of immunodeficiency viruses of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lentivirus from the group of immunodeficiency viruses of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lentivirus from the group of immunodeficiency viruses of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3072932

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.