Abrading – Abrading process – Glass or stone abrading
Reexamination Certificate
2001-03-21
2003-09-23
Hail, III, Joseph J. (Department: 2873)
Abrading
Abrading process
Glass or stone abrading
C451S044000
Reexamination Certificate
active
06623339
ABSTRACT:
TECHNICAL FIELD
This invention relates to a lens machining apparatus and lens machining method which machines the circumferential edges of lenses being machined to prescribed shapes for the purpose of inserting eyeglass lenses or other lenses being machined into lens frames.
BACKGROUND ART
For this type of lens machining apparatus, conventionally, a grindstone type lens machining apparatus has been used wherewith the lens circumferential edge is machined into the prescribed shape by grinding (edging) the circumferential surface of the lens with a grindstone. Insofar as plastic lenses are concerned, however, it is possible to do this by edging and machining. More recently, therefore, edging (cutting) type lens machining apparatuses have been developed wherewith the lens circumferential surface is edged (cut) with a cutter. This type of edging lens machining apparatus is disclosed in Japanese Patent Application Laid-Open No. H9-309051/1997 (published) and Japanese Patent Application Laid-Open No. H11-028650/1999 (published), for example. In Japanese Patent Application Laid-Open No. H4-315563/1992 (published) and Japanese Patent Application Laid-Open No. H5-4156/1993 (published), moreover, technology is disclosed for setting and altering the grinding (edging) load on the grindstone according to the lens circumferential edge thickness, with the object.of preventing lens cracking and efficiently performing suitable machining in cases where the circumferential surface of a lens is ground (edged) with a grindstone (revolving machining tool for machining circumferential surfaces).and the lens circumferential edge is machined to a prescribed shape.
However, with the edging type lens machining apparatus described in Japanese Patent Application Laid open No. H9-309051/1997 (published) and Japanese Patent Application Laid-Open No. H11-028650/1999 (published), executing the entire machining menu demanded for eyeglass lenses with a single chuck operation in one apparatus (where a single chuck operation means one lens holding operation wherewith there is no movement of a lens between different apparatuses) is something that still cannot be done. More specifically, in an ordinary eyeglass lens machining menu,
(1) lens circumferential surface edging and machining (inclusive of bevel edging)
(2) machining for forming grooves in lens circumferential surfaces, and
(3) chamfering edges where the lens circumferential surface and lens faces intersect
are included, but it has not been possible to handle all of these menu items with one chuck operation in one apparatus. In particular, because high machining precision is demanded in bevel edging, groove machining, and chamfering, the ideal is to be able to do this with one chuck operation, inclusive of measuring the shape and position of the lens being machined, but art wherewith that can be done has not been available. Nor has it always been possible, merely by setting and altering the grindstone grinding (edging) load according to the lens circumferential thickness, as in the art described in Japanese Patent Application Laid-Open No. H4-315563/1992 (published) and H5-4156/1993 (published), to perform machining of good precision or machining exhibiting good finished surfaces.
An object of the present invention, in view of the situation described in the foregoing, is to provide a lens machining apparatus and lens machining method wherewith the machining demanded for eyeglass lenses, from measurement to various machining items, can be accomplished with a single chuck operation, and wherewith it is possible to realize high-precision machining.
DISCLOSURE OF THE INVENTION
A first invention is a lens machining apparatus which machines the circumferential edge of a lens being machined for use in spectacles according to shape data, comprising: a lens holding unit which holds the lens being machined at the center of the lens and rotates the held lens being machined about the center of the lens; a circumferential surface edging and machining apparatus which edges the circumferential surface of the lens being machined that is held in the lens holding unit to a prescribed cross-sectional shape by a revolving edging tool; a groove machining apparatus which machines a groove in the circumferential surface of the lens being machined that is being held in the lens holding unit and that has been subjected to circumferential surface edging by the circumferential surface edging and machining apparatus; a chamfering apparatus which chamfers the edges where the circumferential surface and lens faces intersect in the lens being machined that is being held in the lens holding unit and that has been subjected to circumferential surface edging by the circumferential surface edging and machining apparatus; and a lens shape measurement apparatus which measures the lens surface shape and the lens surface position of the lens being machined being held in the lens holding unit.
With this apparatus, for the lens being machined held in the lens holding unit, lens circumference surface edging and machining can be rendered by the circumferential surface edging and machining apparatus, a groove can be machined in the circumferential surface of the lens by the groove machining apparatus, and the circumferential surface edges of the lens can be chamfered by the chamfering apparatus. Not only so, but the lens surface shape and lens surface position of the lens being machined held by the lens holding unit in the same manner can be measured by the lens shape measurement apparatus. Accordingly, by measuring the lens shape and position with the lens being machined still held with the same chuck, when bevel edging is required, bevels can be formed with good precision by circumferential surface edging, and when groove machining is required, a groove can be formed in the lens circumferential surface with good precision. Furthermore, in cases where chamfering is performed also, chamfered bevels can be formed with good precision in lens circumferential surface edges based on the measurement data and the machining particulars.
When provision is made for edging and machining the circumferential surface of a lens with a revolving edging tool, as in the present invention, furthermore, as compared to edging with a grindstone, the amount of edging in can be freely set, wherefore the process up to and including the finished shape can be freely controlled. For example, goal settings can be freely implemented, such as setting how many times to rotate the lens in performing everything up to finishing, or setting the number of seconds in which the machining is to be concluded.
A second invention is the first invention, comprising a machining action mechanism wherein the circumferential surface edging and machining apparatus, the groove machining apparatus, and the chamfering apparatus are deployed fixedly, which subjects the held lens being machined to machining actions by moving the lens holding unit relative to those machining apparatuses.
With this apparatus, the machining apparatuses are caused to perform machining actions by moving the lens being machined itself relative to the tools of the machining apparatuses. Accordingly, the machining apparatuses themselves need do nothing more than turn the tools, and the apparatus configuration is made simple.
A third invention is either the first or the second invention, wherein: the circumferential surface edging and machining apparatus and the groove machining apparatus are deployed adjacently on a base; the axis of the revolving tool of the groove machining apparatus is deployed in a direction perpendicular to the lens holding shaft of the lens holding unit and oriented in a direction parallel to the base; and the axis of the revolving tool of the groove machining apparatus, the axis of the revolving edging tool of the circumferential surface edging and machining apparatus, and the axis of the lens holding shaft are deployed at the same height.
With this apparatus, not only are the circumferential surface edging and machining apparatus and the groove machin
Annaka Satoshi
Arai Michio
Igarashi Takashi
Kikuchi Yoshihiro
Sato Shuichi
Hail III Joseph J.
Hoya Corporation
Oliff & Berridg,e PLC
Shakeri Hadi
LandOfFree
Lens processing device, lens processing method, and lens... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Lens processing device, lens processing method, and lens..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lens processing device, lens processing method, and lens... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3111831