Legged mobile robot and method and apparatus for controlling...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Robot control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S246000, C700S251000, C700S253000, C700S260000, C700S261000, C318S568100, C318S568120, C318S568160, C318S568170, C318S568200, C901S001000, C901S009000, C901S046000, C180S008100, C180S008600

Reexamination Certificate

active

06832132

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
This invention relates to a control mechanism for a realistic robot constructed on modelling the mechanism or the operation of a living body. More particularly, the present invention relates to a control mechanism for a legged mobile robot which has modelled the bodily mechanism of an animal movable on legs, such as human being or monkeys.
More specifically, the present invention relates to a circuit mechanism for a legged mobile robot that can be widely applied in a living space and living environment of the human being and, more specifically, to the control method mechanism of a legged mobile robot that is able to adaptively control its attitude to continue its operation without falling.
The mechanism exploiting the electrical or magnetic action to execute a motion resembling the operation of the human being is called a robot. The word robot is said to originate from ROBOTA (slave machine). The robot came into widespread use towards the end of the sixties. The majority of the robots were industrial robots, such as manipulators or transporting robots, aimed at realization of automation or unmanned production operations in plants.
Recently, researches and development in legged mobile robots, simulating the body mechanism or operations of an animal walking in upstanding attitude on two legs, such as human being or robots, have made rapid progress such that practical utilization thereof is felt to be promising. Although motion on two legs is unstable and present difficulties in attitude or walking control as compared to that on four or six legs, it is excellent in realization of flexible motion operations, such as accommodation to walking surfaces presenting irregularities on the working path, such as non-bulldozed lands or lands presenting obstacles, or to non-continuous walking surfaces, such as staircases or ladders.
The legged mobile robots, emulating the mechanism of a human being, are called “human type” or “human style” robots (humanoid robots). The humanoid robot is able to perform life support for the human being, that is to support human activities in our living environments or our everyday life.
The significance of making researches and development in a robot called a humanoid robot can possibly be grasped from the following two viewpoints.
One of them is that from the human science. That is, through the process of creating a robot having a structure resembling a leg and/or a foot of a human being, devising its control method and simulating the walking performance of the human being, it is possible to technically elucidate the mechanism of the natural human behavior such as walking as the first and foremost human behavior. The results of these researches will appreciably contribute to significant progress in a variety of research fields handling human motion mechanisms in the human engineering, rehabilitation engineering and in the sports sciences.
The other is development of a robot supporting our lives as human partners, that is supporting human activities in various situations in our living environments and in our everyday lives. This sort of the robot needs to learn how to adapt itself to human beings with different personalities or to different environments to make further growths in functional aspects as it learns the performance or manners from the human being in various aspects of our living environments. It may be contemplated that, if the robot is the humanoid robot, that is if the robot is of the same shape or structure as the human being, the robot will operate effectively in having smooth communication with the human being.
For example, if it is necessary to teach a robot to pass through a room as it evades an obstacle it is not allowed to tramp, the user (operator) must find it easier to teach the robot, while the robot will find it easier to learn, if the robot is able to walk on two legs like the human being, than if the robot is of the crawler type or of the four-legged type (see, for example, Takanishi, “Control of a Robot Walking on Two Legs”), appearing in “Ko-So”, Car Technique Society, Kanto Branch, No. 25, 1996 April).
The majority of the human working or living spaces are realized to suit to the bodily mechanism or behavioral pattern of the human being in the form of upstanding walking on two legs. Stated differently, a large number of obstacles are present in the human living space for the present-day mechanical system having wheeled or the like driving devices as motion means. So, in order for the robot as a mechanical system to operate on behalf of the human being in a variety of human operations and to adapt itself more intricately to the living space of the human being, it is desirable that the range of possible motion of the robot be approximately equal to that of the human being. This accounts for expectations generally entertained in the realization of legged movable robots. The fact that the robot has a human type style may be said to be indispensable in elevating the affinity to the human living environment.
Among the usages of the human type robot, there is the usage of taking over the miscellaneous operations in the industrial and productive activities. Examples of these are maintenance operations in nuclear power plants or thermal power plants, transport and/or assembling operations of component parts in petrochemical plants, maintenance operations in high-rise buildings and rescue operations in conflagration or the like calamities.
Among other usages of the human type robots, there is a usage of life adherent type usage, that is the usage aimed at co-existence with human being, rather than life supporting type usage, such as taking over difficult or painful operations. It is a supreme object of this type of robot to faithfully reproduce the full body exercising type operating mechanism proper to an animal walking on two legs, such as human being or monkeys. Moreover, the human type robot, emulating the animal of high intellect, such as human being or monkeys, is desirably spontaneous in its performance exploiting its four limbs as a living body besides being expressive in its behavior. In addition, the human type robot is required not only to execute the pre-input operating pattern faithfully, but also to realize vivid behavioral expressions responsive to the words or demeanor of the human being such as praising or admonition. In this meaning, the entertainment-oriented human type robot, emulating the human being, may be worth being called a “human type” robot.
In a well-known manner, the human being has hundreds of articulations, that is hundreds of degrees of freedom. Although it is desirable to afford approximately the same number of degrees of freedom to the legged movable robot in order to impart the performance as close to that of the human being as possible, this is technically of utmost difficulty. The reason is that, although at least one actuator needs to be provided for each degree of freedom, it is well-nigh impossible to have hundreds of actuators mounted on a robot as a mechanical device because of designing limitations in weight or size. On the other hand, if there are many degrees of freedom, the volume of calculations for robot positions, behavioral pattern control or attitude stabilization control, is exponentially increased.
From this reason, the routine practice is to construct the human type robot with the degrees of freedom on the order of tens of articulations which is appreciably smaller than those of the human beings. Therefore, in designing and control of the human type robot, it may be said to be crucial how more spontaneous performance is to be realized with the smaller number of degrees of freedom.
The legged mobile robot walking on legs is superior in being able to walk or run flexibly such as walking or running on a staircase or over an obstacle, however, it is difficult to control in attitude or stable walking because the number of legs is smaller and the center of gravity position is elevated. In particular, in the case of a humanoid robot, it is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Legged mobile robot and method and apparatus for controlling... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Legged mobile robot and method and apparatus for controlling..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Legged mobile robot and method and apparatus for controlling... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3310495

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.