LED lamps

Electric lamp and discharge devices – With luminescent solid or liquid material – Solid-state type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S498000, C313S512000, C313S504000

Reexamination Certificate

active

06633120

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention s related to colored and white LED lamps. A purpose of the present invention is to provide a single-chip LED lamp that is up to 250 times ore more powerful than a conventional single-chip LED lamp. Another purpose of the invention is to provide a two-chip white LED lamp that is up to 250 times more powerful than a conventional single-chip white LED lamp.
Existing single-chip LED lamps are generally of low input power, typically 40-150 milliwatts.
Designers of lamps for outdoor use have had the choice mainly of incandescent tungsten light sources, gas discharge light sources, and LED light sources. Designers of LED-based lamps requiring high power have had to resort to using clusters of single chip LED lamps, each of about 0.1 watt rating, wired in series or in parallel and housed together as a single lamp unit to achieve enhanced power. Providing a lamp unit by clustering single-chip LED lamps is very costly, since it involves making several single-chip lamps, housing them in a unit, wiring them up, and testing the final unit. U.S. Pat. Nos. 5,382,811 and 5,632,551 provide examples of cluster lamps.
Applications for high power LED colored lamps include outdoor displays, which usually have to operate in direct sunlight and so require powerful lamps, and vehicle lights and traffic lights. At present long-life LED traffic lights for use at street intersections need more than a hundred conventional single-chip LED lamps for each lamp unit. The need to use many LED lamps to provide a single LED traffic light is a disadvantage, particularly since only one tungsten light source is needed for a conventional traffic light.
Current blue-green LED traffic lights rely on gallium nitride (GaN) LED technology; whereas amber and red traffic lights rely on aluminum gallium indium phosphide (AlGaInP) technology. It is an object of this invention to provide high power single chip LED lamps in both of these technologies.
Applications for high power LED white lamps include vehicle headlights and reverse lights, vehicle internal lights, torches and other battery powered lighting devices. White single chip LED lamps are available, but they are typically of only about 0.1 watt, unless they are cluster lamps. Furthermore, they rely on a GaN chip that generates ultraviolet or blue light. All or most of this generated light energy has to be converted, using fluorescent material, into longer wavelength components to produce the white light. The light conversion results in loss of light energy.
FIG. 31
illustrates the typical spectral distribution of the white light produced. This is quite different from the spectral distribution of daylight, which is represented by dotted line
437
.
Prior art single-chip LED lamps having clear convergent lenses, used widely in outdoor displays, suffer not only from the fact that they are of low power but also from the fact that they project light that is not uniform. The non-uniformity is partly due to the bonding pad or pads on the chip top face, which are projected by the lamp as dark areas. The typical width of the bonding pad is about 30-40% of the width of the chip and this is large enough to interfere with achieving good uniformity of projected light even if the LED lens is defocussed relative to top face of the chip. For good quality image displays it is desirable to match the apparent brightnesses of the viewed lamps to within 5%. To achieve this it is important to reduce the non-uniformity caused by the bonding pads.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a single-chip LED lamp that avoids or reduces the need for clustering.
A further object of the present invention is to provide a single chip LED lamp arranged so that light emitting portions of the chip are adjusted to be equalised in intensity.
A further object of the present invention is to provide a single chip LED lamp in which the sizes of the bonding pads relative to the size of the chip are reduced, so as to improve uniformity of light projected by a lensed lamp.
A further object of the present invention is to provide a single chip LED lamp, with input power in the region of 5-25 watts, that has low rise of the junction temperature when energised, thus prolonging the life of the lamp and reducing or eliminating the need for forced ventilation of the lamp.
A further object of the present invention is to provide a single chip LED lamp arranged so that light emitting portions of the chip that are faulty, by drawing more than their fair share of current, are starved of electrical power.
A further object of the present invention is to provide a single chip AlGaInP lamp of high power, avoiding the need for clustering lamps for an amber or red street traffic light.
A further object of the present invention is to provide an AlGaInP LED chip for an LED lamp that does not require a thick (and therefore costly) window layer, either above or below the active region, for efficient light extraction.
A further object of the present invention is to provide a white light lamp based on just two LEDs one of which has an AlGaInP active region.
A further object of the present invention is to provide a white light lamp having a spectral distribution close to that of daylight.
A further object of the present invention is to provide a high power RGB lamp that is based on two chips one of which has an AlGaInP active region.
According to an aspect of the invention an LED lamp includes an LED chip having a top face and comprising a substrate and semiconductor layers between the top face and the substrate, the semiconductor layers forming the core of a light guide extending parallel to the plane of the top face. The chip includes at least one cavity with light-emitting side walls that extends into at least one of the semiconductor layers. The chip converts guided light in the core into top light. According to another aspect of the invention guided light in the core is extracted with the aid of reflectors that are parallel to the semiconductor layers. According to yet another aspect of the invention metal tracks connected to the n-type semiconductor layer are provided that enhance the efficiency of the lamp.
According to another aspect of the invention an LED lamp includes a chip comprising at least two light emitters each having a triangular top face, the two emitters being separated by a trench.
According to another aspect of the invention a single chip LED lamp which can have input power of 5-25 watts includes an LED chip having a top face and comprising a substrate and semiconductor layers between the top face and the substrate, the semiconductor layers forming the core of a light guide extending parallel to the plane of the top face. The chip includes at least one trench, and a heat sink is attached to the top face of the chip that draws heat from the active region of the chip.
According to another aspect of the invention an LED lamp has an LED chip with a plurality of individually powered light emitting elements each provided with a fuse. This improves the yield of usable LED chips during manufacture.
According to another aspect of the invention there is provided an LED lamp comprising: an LED semiconductor core having a thickness and comprising a plurality of vertically stacked semiconductor layers; cavities in the core having side walls that divert light from the core; first and second reflectors that are below and above the core, respectively; each of the reflectors being reflective to light from the core that has an angle of incidence to the reflector of 60 degrees, the reflectors guiding light generated in the core towards the cavities; and the core being lattice-matched to GaAs and generating visible light.
According to another aspect of the invention a high power AlGaInP LED for a lamp is manufactured using the steps of: providing a member having a planar surface; providing a GaAs substrate on which an AlGaInP LED is epitaxially grown; providing an electrical terminal on the LED; joining the member to the LED; removing th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

LED lamps does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with LED lamps, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and LED lamps will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3170289

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.