Leakage detector for use in combination with a signal level...

Electricity: measuring and testing – Impedance – admittance or other quantities representative of... – Parameter related to the reproduction or fidelity of a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S095000, C324S627000

Reexamination Certificate

active

06611150

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to leakage detectors, and more particularly, is directed to a leakage detector which can be used in combination with a signal level meter.
The use of a signal level meter (SLM) to measure signal levels of a cable or CATV system, as well as leakage from such a system, is well known. For example, in the article “FCC Leakage Limits” in Communications Technology, July, 1988, page 38 by Martin J. Walker, it is stated that the FCC limits on leakage are 15 &mgr;V/m at 100 feet for frequencies up to and including 54 MHz or frequencies over 216 MHz, and 20 &mgr;V/m at 10 feet over 54 MHz up to and including 216 MHz. In this article, Mr. Walker states that most systems use a signal level meter calibrated in dBmV to measure leakage.
NCTA Recommended Practices for Measurements on Cable Television Systems, Second Edition, 1989, published by the National Cable Television Association (NCTA), Washington, D.C., pages I.J.1-I.J.10, deals with signal leakage systems which can be used to comply with FCC Rules and Regulations part 76, subpart K, as to the maximum leakage limits from a cable system. As stated at page I.J.6, most measurements of field strength are commonly made with a field strength meter which is, in fact, a selective voltmeter. However, as further discussed therein, most commercially available meters do not have the required sensitivity to measure 20 &mgr;V/m at channel 13, and therefore, measurements may have to be confined to either the low end of the VHF high band or by employing a preamplifier ahead of the field strength meter. At page I.J.8, there is also a teaching of decreasing the IF bandwidth of a spectrum analyzer so that less noise energy from external or man-made noise is admitted, whereby such external or man-made noise, for example, from an urban environment, does not obstruct or affect the measurement of leakage.
U.S. Pat. No. 5,493,210 to Orndorff et al, and U.S. Pat. No. 5,633,582 to Orndorff et al, which is a continuation of the former, the disclosures of which are both incorporated herein by reference, use the above teachings to provide a combined signal level meter and leakage detector. In these patents, a signal level meter is also used to detect leakage, and a common IF stage is provided for both leakage detection and the signal level meter operation. Specifically, the required sensitivity for leakage detection is provided in two ways. First, the IF stage includes two switchable IF filters, one having a bandwidth of 280 KHz for use in the signal level meter mode, and the other having a reduced bandwidth of 10 KHz for the leakage detection mode. Switching is controlled by a microcontroller. Second, a preamplifier is provided between the antenna which receives the leakage signal and the first mixer in the IF stage for the same. Since the mixer adds noise to the signal, the preamplifier amplifies the leakage signal before the noise is added by the mixer, thereby increasing the signal to noise ratio.
However, the system of these patents is relatively complicated, and requires two separate inputs, one for the antenna which is used in the leakage mode, and the other for the cable which is used in the signal level meter mode. As a result, two different receiver front ends are required, one being a wideband dual-conversion receiver front end connected to the cable input and the other being a single-conversion receiver front end connected to the antenna input. The outputs of the two receiver front ends are connected with two different inputs of the IF stage. This arrangement, however, makes the circuitry more complicated and costly.
For a video modulated carrier, the 100% carrier level corresponds to the vertical and horizontal sync peaks. The carrier level within the video portions is variable and depends on the picture information being transmitted. Therefore, the most accurate way to measure the level of the video modulated carrier for signal level meter and leakage detector applications is to determine the peak level at the horizontal or vertical sync peaks.
Further, since the leakage signal can be 10-20 dB below the level of the noise floor, the required measurement range for leakage measurements must extend to signals to about −55 dBmV or lower. As discussed above, the classic way around this problem is to use a narrower IF passband and to also increase the level of the leakage signal prior to adding noise by the receiver front end. This means that the signal level meter must use an IF bandwidth of 10-15 KHz to improve sensitivity for the leakage measurement. However, this has the drawback that the lowered bandwidth does not allow the peaks of the horizontal synchronizing signal to be used for processing, so that the speed of response to signal level changes is fundamentally limited to the detection and processing of peaks of the vertical synchronizing signal or to an average of the video signal. To use the peaks of the horizontal synchronizing signal, a wide IF bandwidth of, for example, 280 KHz must be used for leakage detection.
Also, the use of a narrower IF bandwidth requires greater tuning precision in the tuner and in the electronic tuning control.
In the former case, detection of the peaks of the vertical synchronizing signal will not give a sufficiently useful response for leak tracing because of the slowness of the system. In the latter case of detecting the average of the video signal, the measurement variation of the leakage signal is unrelated to the carrier level of the video signal, due to constant changes in the video signal. As a result, leakage detection is affected by the video signal itself, which can provide misleading results.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a leakage detector which can be used in combination with a signal level meter, that overcomes the problems with the aforementioned prior art.
It is another object of the present invention to provide a combination leakage detector and signal level meter that includes a single signal path, and thereby, common circuitry, for both signal level meter and leakage detection operations.
It is still another object of the present invention to provide a leakage detector which provides leakage signal processing circuitry after the IF stage and detector for use in leakage detection operations.
It is yet another object of the present invention to provide a leakage detector which uses filtering and noise power subtraction circuitry after the IF stage and detector for use in leakage detection.
It is a further object of the present invention to provide a leakage detector having a sufficiently fast response to signal level changes, in order to use the peaks of the horizontal synchronizing signal of the video signal to reduce noise in the leakage signal, and thereby easily trace leaks in a CATV system.
It is a still further object of the present invention to provide a leakage detector which uses a relatively wide IF bandwidth of 280 KHz for both the signal level meter mode and leakage detection mode.
It is a yet further object of the present invention to provide a leakage detector which can be used in combination with a signal level meter, and which is economical and easy to manufacture and use.
In accordance with an aspect of the present invention, a leakage detector includes a receiver front end having an input for connection with an antenna; an intermediate frequency (IF) stage connected with the receiver front end for producing an intermediate frequency signal; a detector having an input for producing an amplitude modulation (AM) detected output signal in response to the intermediate frequency signal; a leak processor operative in a leakage mode only when the antenna is connected with the receiver front end, the leak processor having an input connected to the detector for removing noise from the AM detected output signal which is above and below the frequency of a synchronizing signal of the AM detected output signal, and which is not in frequency coherence w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Leakage detector for use in combination with a signal level... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Leakage detector for use in combination with a signal level..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Leakage detector for use in combination with a signal level... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3078525

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.