Supports: cabinet structure – For particular electrical device or component
Reexamination Certificate
2001-02-26
2002-09-24
Hansen, James O. (Department: 3637)
Supports: cabinet structure
For particular electrical device or component
Reexamination Certificate
active
06454368
ABSTRACT:
BACKGROUND OF THE INVENTION
The problem encountered in switch cabinets is that the components built into the cabinet must be connected with electrical lines outside of the cabinet; in other words, the “insides” must be connected to the “outside world.” A particular problem in this connection is the necessity of configuring housings, especially switch-cabinet housings, in accordance with the standard IEC 529, namely such that moisture and/or foreign objects cannot enter, in an effort to prevent damage to the components housed in the switch cabinet. In this connection, the degree of protection IP 54 included in the aforementioned standard establishes particularly high requirements.
According to the state of the technology, screw terminals or series terminals, to which the electrical conductors led from the outside into the switch cabinet are connected, are provided in the cabinet for connecting the “insides” of the cabinet to the “outside world.” From the terminals, the individual lines lead to the different components housed in the switch cabinet. The electrical lines led into the switch cabinet from the outside are led through bores in one or more side walls of the cabinet and guided up to the screw or series terminal. For additional sealing, the bores are provided with rubber grommets or similar sealing elements. A disadvantage of this is that the switch cabinet must be opened for connecting the external lines. A further disadvantage is that the person tasked with connecting the lines must be very familiar with the internal layout of the switch cabinet to ensure that the correct conductor is always connected to the correct terminal input. This setup also requires a certain amount of manual dexterity—particularly under unfavorable circumstances, such as cramped conditions or the presence of moisture—for guiding the conductors into the terminal so as to assure a durable, reliable terminal connection.
A further problem associated with the known switch cabinets according to the state of the technology is that connecting the external lines with the aid of plug couplings is hardly possible. While it is possible to substitute a multipoint connector or edge socket connector for the terminal strip disposed inside the switch cabinet, the problem that arises is that the leadthrough bores in the cabinet walls are kept as small as possible to make the passageway for the external lines subsequently as impenetrable as possible to moisture and dirt; these bores are therefore typically much too small for leading through ready-made lines equipped with plugs or bushings. This means that, in the use of plug couplings, the external lines must be guided through the cabinet wall in a first work cycle, and the plug or bushing elements are then mounted on the line ends in a second, on-site work cycle, so the corresponding coupling can then be inserted.
Finally, for connecting external, ready-made lines that have plugs or bushings to switch cabinets, it is known from the state of the technology to arrange corresponding coupling parts directly in the housing bores so that lines can be led further from these couplings to the aforementioned screw terminals or terminal strips, or the desired components in the switch cabinet can be actuated directly.
It is known from U.S. Pat. No. 5,002,502, for example for antenna connections to satellite receivers, to cut holes into a device wall and arrange a board having coupling elements in the corresponding wall opening. Plugs that are fixed to conductors can be inserted onto the coupling elements, both from the outside and inside of the wall. For additional sealing, the coupling elements are provided with outside threads, onto which the plugs can be tightly fixed with the aid of union nuts. A disadvantage of this is the extremely complex design of the coupling elements or plugs. A further drawback is the fact that the same number of coupling elements as wall openings is provided on both sides of the board having the coupling elements, so there is always a 1:1 plug connection, that is, a coupling-plug combination on the outside of the device and a respective associated coupling-counterplug combination inside the device. According to the state of the technology, the board having the coupling elements is only an opening for guiding the external lines into the device interior. It is therefore necessary to provide further electrical or electronic functional parts in the switch cabinet to connect the lines, both in terms of conduction and function, to the components disposed in the cabinet.
DE-U 90 03 879 discloses a cable-plug distributing box having a plug bushing for a plug on the outside. To achieve a flat construction, the plug bushing is disposed on an intermediate board, which is in turn oriented perpendicular to a main board, so the insertion direction of the plug extends perpendicular to the main board. For the exit of the lines, individual contact sheets, to which the outgoing lines are connected individually, are disposed on the side opposite the plug bushing.
EP 0 663 782 A1 discloses a distributing cabinet that is designed for the connection of an external network to an internal network. For this purpose, it has a so-called routing distributor, which is held to pivot inside the distributing cabinet. The lines of both the internal and external networks are guided to modules embodied with plug bushings on the rear side of the routing distributor, with the individual lines of the external network being appropriately connected to those of the internal network.
SUMMARY OF THE INVENTION
In view of the problems outlined at the outset, it is the object of the invention to embody a leadthrough adapter for a switch cabinet to permit the external lines to be connected easily, assure the impermeability to moisture and foreign objects according to the degree of protection IP 54 pursuant to IEC 529, and improve the function of the adapter. This object is accomplished in a simple, inventive manner with the present invention.
The concept underlying the invention is to mount plugs onto the ends of the external lines provided for connecting to the switch cabinet; the plugs can be inserted simply into a bushing strip on the cabinet that has a complementary embodiment. To permit the use of ready-made plugs, the bushing strip is simply mounted to the outside of a housing wall of the switch-cabinet housing. The bushings into which the plugs can be inserted to produce a plug coupling are then mounted on the front side of the adapter mounted on the outside of the cabinet housing. Disposed on the rear side of the adapter, which faces the interior of the switch cabinet, are elements for connecting the components housed inside the cabinet to the adapter. These elements for connecting the components housed in the switch cabinet encompass electrical or electronic functional parts, in the form of connecting elements, for the components that are disposed inside the switch cabinet, the parts being positioned directly on the rear side of the adapter. The connecting elements have plug-and-socket connectors with varying embodiments for the components. The plug-and-socket connectors are embodied as system plug-and-socket connectors, such as keyed plug connectors, flat-line plug-and-socket connectors or latch-5 plug connectors. The plug-and-socket connectors are preferably compatible with the plug-and-socket connections on the components. Thus, the external lines and the “insides” of the switch cabinet can be connected easily via plug connections. In comparison to the state of the technology, however, there is no 1:1 plug connection; instead, an arbitrary number and type of input plug connections can be combined with a likewise arbitrary number and type of different output plug connections.
It is also advantageously possible with the invention to provide different electrical or electronic structural elements directly on the adapter, such as signal converters, display devices or separating devices. It is particularly advantageous to be able to mount fuse elements, such as overcurrent switches or
Bedau Norbert
Kager German
Schlichtig Karl
Schuir Alexander
Hansen James O.
Kelemen Gabor J.
Venable
Voorhees Catherine M.
Wieland Electric GmbH
LandOfFree
Leadthrough adapter for switch cabinets does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Leadthrough adapter for switch cabinets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Leadthrough adapter for switch cabinets will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2897351