Lead free solder and soldered article

Alloys or metallic compositions – Tin base – Copper containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S400000, C228S056300

Reexamination Certificate

active

06660226

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to solders and to soldered articles.
2. Description of the Related Art
Solders are conventionally used to electrically or mechanically connect electronic devices and electronic parts. As such solders, a solder mainly containing Sn and Pb (hereinafter referred to as “Sn—Pb solder”) has been generally employed. In consideration of global environment, however, solders mainly including Sn and containing, for example, Ag, Bi, Cu, In, or Sb as balance and containing no lead (Pb) (hereinafter referred to as “Pb free solder”) have been in use. Soldered articles having electrical joints with satisfactory solderability are produced by using these Pb free solders.
However, soldered articles using solders mainly containing Sn, particularly those using Pb free solders invite electrode leaching upon soldering. In addition, Sn diffuses into an electrode (conductor) when the articles are left at high temperatures or are subjected to heat aging, to thereby deteriorate electrical characteristics and mechanical characteristics of the resulting electronic devices and electronic parts.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide a Pb free solder and a soldered article which are resistant to electrode leaching upon soldering or upon heat aging after soldering and exhibits less deteriorated characteristics.
Specifically, the invention provides, in a first aspect, a Pb free solder including at least one selected from 0.01 to 1% by weight of Co, 0.01 to 0.2% by weight of Fe, 0.01 to 0.2% by weight of Mn, 0.01 to 0.2% by weight of Cr, and 0.01 to 2% by weight of Pd; 0.5 to 2% by weight of Cu; and 90.5% by weight or more of Sn.
In a second-aspect, the invention provides a Pb free solder including at least one selected from 0.01 to 0.2% by weight of Mn and 0.01 to 0.2% by weight of Cr; at least one selected from 0.5 to 9% by weight of Ag and 0.5 to 5% by weight of Sb; and 90.5% by weight or more of Sn.
The invention provides, in a third aspect, a Pb free solder including 0.01 to 1% by weight of Co, 0.5 to 9% by weight of Ag, 0.5 to 2% by weight of Cu, and 88.0% by weight or more of Sn.
In a further aspect, the invention provides a soldered article including an article containing a transition metal conductor and being joined through a solder, and the transition metal conductor is liable to spread in molten Sn. In this soldered article, the solder is the Pb free solder according to the first, second or third aspect.
In the invented soldered article, the transition metal conductor may be at least one selected from elementary substances or alloys thereof of the group consisting of Cu, Ag, Ni, Au, Pd, Pt, and Zn.
The use of the invented Pb free solder can yield satisfactory solderability in 'solder joints, can inhibit electrode leaching and can minimize deterioration in electric characteristics, mechanical characteristics, and other various characteristics. Particularly, the use of the invented Pb free solder can inhibit electrode leaching upon soldering and, in addition, can inhibit electrode leaching when the soldered article after soldering is left at high temperatures (e.g., upon heat aging).
The invented Pb free solder is a solution to the electrode leaching problem in conventional Pb free solders and puts such Pb free solders to use. The invention can therefore provide a soldered article applying less load upon environment.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention will be illustrated in further detail below.
The invented Pb free solder according to the first aspect includes Cu, Sn, and at least one selected from Co, Fe, Mn, Cr, and Pd. The invented Pb free solder according to the second aspect includes Sn, and at least one selected from Mn and Cr, and at least one selected from Ag and Sb. The invented Pb free solder according to the third aspect includes Co, Ag, Cu, and Sn.
The invented soldered article includes an article containing a transition metal conductor and being joined through a solder, and the transition metal conductor is liable to spread in molten Sn. As the solder, the first, second, or third invented Pb free solder is used. This composition can provide a soldered article having a satisfactory solderability and a high bonding strength, and a sufficient resistance to electrode leaching.
According to the invention, Co, Fe, Mn, Cr, or Pb added in a small amount forms a segregation layer at the interface between the conductor and the solder to prevent a reaction between the electrode (conductor) and the molten solder to thereby inhibit electrode leaching.
In the first and third invented Pb free solders, the amount of Co is set to 0.01 to 1% by weight based on the total weight of the solder. If the amount of Co is less than 0.01% by weight, the resistance to electrode leaching is deteriorated, and in contrast, if it exceeds 1% by weight, the liquidus temperature increases to deteriorate melting properties. The amount of Co is preferably in a range from 0.01 to 0.5% by weight and more preferably in a range from 0.4 to 0.5% by weight.
In the first invented Pb free solder, the amount of Fe is set to 0.01 to 0.2% by weight based on the total weight of the solder. If the amount of Fe is less than 0.01% by weight, the resistance to electrode leaching is deteriorated, and in contrast, if it exceeds 0.2% by weight, the liquidus temperature increases to deteriorate melting properties. The amount of Fe is preferably in a range from 0.01 to 0.1% by weight, and more preferably in a range from 0.05 to 0.1% by weight.
The amount of Mn in the first and third invented Pb free solders is set to 0.01 to 0.2% by weight based on the total weight of the solder. If the amount of Mn is less than 0.01% by weight, the resistance to electrode leaching is deteriorated, and in contrast, if it exceeds 0.2% by weight, the liquidus temperature increases to deteriorate melting properties. The amount of Mn is preferably in a range from 0.01 to 0.1% by weight, and more preferably in a range from 0.05 to 0.1% by weight.
The amount of Cr in the first and second invented Pb free solders is set to 0.01 to 0.2% by weight based on the total weight of the solder. If the amount of Cr is less than 0.01% by weight, the resistance to electrode leaching is deteriorated. In contrast, if it exceeds 0.2% by weight, the liquidus temperature increases to deteriorate melting properties. The amount of Cr is preferably in a range from 0.01 to 0.1% by weight, and more preferably in a range from 0.05 to 0.1% by weight.
In the first and second invented Pb free solders, the amount of Pd is set to 0.01 to 2% by weight based on the total weight of the solder. If the amount of Pd is less than 0.01% by weight, the resistance to electrode leaching is deteriorated, and in contrast, if it exceeds 2% by weight, the liquidus temperature increases to deteriorate melting properties. The amount of Pd is preferably in a range from 0.01 to 1% by weight, and more preferably in a range from 0.4 to 0.6% by weight.
The amount of Ag in the second and third invented Pb free solders is set to 0.5 to 9% by weight based on the total weight of the solder. If the amount of Ag is less than 0.5% by weight, a satisfactorily improved strength is not obtained. In contrast, if it exceeds 9% by weight, an excess Ag
3
Sn intermetallic compound deposits to decrease bonding strength, and the solder liquidus temperature increases to deteriorate melting properties. The content of Ag is preferably in a range from 1 to 6% by weight, and more preferably in a range from 3 to 5% by weight.
The amount of Cu in the first and third invented Pb free solders is set to 0.5 to 2% by weight based on the total weight of the solder. If the amount of Cu is less than 0.5% by weight, a satisfactorily improved strength is not obtained. In contrast, if it exceeds 2% by weight, excess Cu
6
Sn
5
and Cu
3
Sn intermetallic compounds deposit to decrease bonding strength, and the solder liquidus temperature increases to deteriorate melting properties. The cont

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lead free solder and soldered article does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lead free solder and soldered article, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lead free solder and soldered article will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3153971

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.