Lead-free alloy plating method

Electrolysis: processes – compositions used therein – and methods – Electrolytic coating – Coating moving substrate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C205S148000, C205S210000, C205S219000, C205S226000, C205S228000

Reexamination Certificate

active

06342146

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention (Technical Field)
The present invention relates to a plater which continuously plates articles. The invention is suitable for single substance or alloy plating. The invention further provides novel rinse and dryer methods and devices.
2. Background Art
There are numerous continuous platers in the prior art. For instance, U.S. Pat. No. 2,142,829, entitled “Plating Machine” to J. F. Trudeau; U.S. Pat. No. 2,255,922, entitled “Return Type Fast Transfer Machine” to V. Finston; U.S. Pat. No. 2,428,141, entitled “Process for Cleaning, Stripping, and Polishing Metal Surfaces” to T. E. Burkhardt; U.S. Pat. No. 2,387,160, entitled “Article Handling Apparatus” to W. W. Loney; U.S. Pat. No. 4,189,360, entitled “Process for Continuous Anodizing of Aluminum” to Woods, et al.; U.S. Pat. No. 4,263,122, entitled “Electrocoating Equipment” to Urquhart; and Meaker Variable Speed Plating Machine pamphlet; all disclose a single bath continuous plating system. However, these references do not disclose multiple baths. In addition, the '122, '360 and '141 patents do not teach a horizontal system, but lower and lift articles or parts to be plated into the bath. The '160 patent describes plating only a portion of the article, leaving the rest above the plating bath. U.S. Pat. No. 2,043,698, entitled “Method and Apparatus for Spacing Electrodes” to J. P. Dyer discloses spacing anodes for a plating operation.
Other prior art patents disclose multiple plating baths or processes, such as U.S. Pat. No. 3,266,308, entitled “Electrochemical Treating and Apparatus” to H. Pochapsky, et al.; U.S. Pat. No. 3,657,097, entitled “Selective Plating Machines” to Baldock, et al.; U.S. Pat. No. 4,377,461, entitled “Tab Plater for Circuit Boards or the Like” to Lovejoy; U.S. Pat. No. 4,501,650, entitled “Workpiece Clamp Assembly for Electrolytic Plating Machine” to Maron; U.S. Pat. No. 4,539,090, entitled “Continuous Electroplating Device” to Francis; and U.S. Pat. No. 4,812,211, entitled “Process and System for Electrodeposition Coating” to Sakai. The '211 and '309 patents disclose complicated movement systems; the '211 patent provides for the articles to be plated to be disposed in baskets. The '211, '090, '650, '097 and '461 patents all disclose chain conveyor systems, some with hoists for lowering and lifting the parts into the baths/processes. The '090, '650, '097, and '461 patents all disclose plating only a portion of the article, rather than submerging the entire article into the plating tank.
The present invention, on the other hand, allows for multiple bath plating, alloy plating, submersion of the entire article, a novel horizontal conveyor/drive system and recycling of most process streams.
SUMMARY OF THE INVENTION (DISCLOSURE OF THE INVENTION)
The present invention is of a continuous plating system and method for plating articles comprising: multiple baths, wherein at least one bath comprises a plating bath; a continuous conveyor system for passing the articles through the multiple baths comprising a drive, a conveyor comprising altemating links and hinges, and numerous carriers for attaching numerous articles to the conveyor; and a conductor for providing electricity to the articles while being conveyed. In describing the present invention, the words “bath” and “station” are interchangeable, for example, a rinse station is equivalent to a rinse bath and a drying station is equivalent to a drying bath. In the preferred embodiment, the links comprise feet to be driven by the drive and the feet provide electrical current continuity between the conductor and the carriers. A preferred support bar for the conveyor is made of a synthetic resin polymer (e.g., Teflon), and the conveyor and the carriers are preferably (silver) plated to provide electrical conductivity. The plating bath comprises at least one anode for plating the anode substance onto the articles, an upper tank disposed within a lower tank for providing overflow and recirculation of a plating solution, a narrow opening and a narrow exit corresponding substantially in shape and width to the articles (and preferably comprising adjustments for changing the shape and size of the opening and exit), multiple pumps for providing even plating conditions to the articles, and multiple spray jets for providing even circulation and plating to the articles. Internal guides are best used within at least one of the multiple baths for preventing sway of the articles and external guides external to at least one of the multiple baths for providing ease of movement of the articles into the bath. The articles may be flat or non-planar. The carriers preferably have hooks which hook into an opening in the articles. The system preferably has an oval configuration and applies additional direct current by exposed cable or brushes. The system best further comprises a dryer in line with the continuous plating system and positioned after the multiple baths, the dryer comprising: a box comprising a heated fluid; an entry opening for the articles to enter the box; and an exit opening for the articles to exit the box, as well as a wicking device (such as a mesh material in the box) to help remove moisture from the articles. The system also best employs a rinse system in line with the continuous plating system and positioned after the multiple baths, the rinse system comprising: a first rinse station wherein a substance from the multiple baths is rinsed from the articles, the first rinse station comprising an effluent with a higher concentration of the substance; and at least one additional rinse station wherein the substance Is further rinsed from the articles, the additional rinse station comprising an effluent with a lower concentration of the substance; and for recycling effluent from the rinse station back into the continuous plating system (preferably with at least four rinse stations). The articles are preferably completely submerged within the plating bath(s). Most preferably, the plating system comprises: at least three plating baths, wherein the first bath comprises a substance to be plated on the articles, the second bath comprises a different substance to be plated on the articles and the third bath comprises the same substance as the first bath to be plated on the articles, the substances comprising an alloy plate (preferably tin and bismuth) on the articles; a continuous conveyor system for passing the articles through the multiple baths comprising a drive, a conveyor, and numerous carriers for attaching numerous articles to the conveyor; and a conductor for providing electricity to the articles while being conveyed. Most preferably, the system uses at least five plating baths in the following order and comprising the following in solution to be plated on the articles: fin, bismuth, tin, bismuth and tin. However, the system can be used to plate many metal alloys, including tin, bismuth, lead, titanium, cadmium, nickel, and zinc, and combinations thereof. Further, the system preferably has at least one bath comprises a plating bath, and the other baths comprise at least one process bath selected from the group consisting of cleaning, electrocleaning, degreasing, rinsing, drying, fluxing, reflowing and stripping, most preferably at least the following baths in the following order a cleaning bath; a rinsing bath; a plating bath; and a rinsing bath, preferably with a drying station subsequent to the final rinsing bath. The conveyor may comprise the conductor, so as to provide electricity to the articles while being conveyed thereon. Here, synthetic resin polymer bars (e.g., Teflon) may be used to support the conveyor.
The invention Is also of a continuous plating system and method for plating articles comprising: multiple baths, wherein at least one bath comprises a plating bath; a horizontal continuous conveyor system for passing the articles through the multiple baths while completely submerging the articles in the multiple baths, compr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lead-free alloy plating method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lead-free alloy plating method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lead-free alloy plating method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2841242

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.