Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor
Reexamination Certificate
2001-05-21
2002-10-15
Nelms, David (Department: 2818)
Semiconductor device manufacturing: process
Packaging or treatment of packaged semiconductor
C438S124000
Reexamination Certificate
active
06465274
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method for stamp tooling bleed barrier grooves in thin material for preventing bleed of encapsulant over an integrated circuit exposed pad or slug for utilization as a heat sink.
BACKGROUND OF THE INVENTION
In the fabrication of integrated circuits, it is often necessary to provide an exposed thermal pad or slug of highly thermally conductive material, such as, for example, copper, which is an integral part of or attached to a lead frame in order to conduct heat away from the semiconductor chip attached to the lead frame. The preferred finish for an exposed pad lead frame is palladium so as to avoid any wet process steps. The purpose of the palladium coating, when used, is set forth in Ser. No. 08/190,729, the contents of which are incorporated herein by reference. The exposed thermal pad is generally defined as the surface of the lead frame opposed to and adjacent to the semiconductor chip. It should be understood that, as an alternative, the lead frame can be made thicker in the region of the thermal pad or with an attached thermal slug. A portion of the processing operation involves encapsulation of the chip and lead frame. This operation requires that the thermal pad be exposed to the external environment in order to allow for maximum dissipation of heat from the semiconductor chip to the external environment through the thermal pad. During encapsulation, the pad is disposed against the mold surface, preferably under compression against the mold surface, to minimize the likelihood of encapsulant traveling between the mold surface and the thermal pad and thereby over the thermal pad surface.
A problem may arise during the encapsulation as described above if the lead frame encapsulation is not flat to the edges or if the compression of the thermal slug against the mold surface is insufficient to prevent mold bleed wherein the molding material not only encapsulates the lead frame and semiconductor chip, but the molding material also passes over and forms a thin, generally transparent coating over the thermal pad. This coating of encapsulant over the thermal pad reduces the thermal performance of the thermal pad by reducing the exposed pad area. The encapsulant coating over the thermal pad also prevents or reduces the ability to bond or solder to the external thermal sink. In addition, irregular mold bleed makes it difficult to specify manufacturing limits and causes a problem during quality control to judge acceptable and unacceptable criteria. Uncontrolled mold bleed is also a cosmetic defect that may result in unacceptability of an otherwise good product.
In the prior art, this mold bleed has generally been removed by abrading or by chemical action of some type. The abrading or chemical action step involves an economic cost in that the abrading and/or chemical action step must be added. In addition, the abrading and/or chemical action step may damage, contaminate or cause removal of all or part of the palladium coating over the lead frame, thereby minimizing or eliminating the beneficial effects derived from the palladium coating.
SUMMARY OF THE INVENTION
In accordance with the present invention, the above described problems of the prior art are minimized if not eliminated.
Briefly, the above is accomplished by providing a barrier to the encapsulant travel over the thermal pad during device encapsulation. This is accomplished in several ways in accordance with the present invention. In accordance with one group of embodiments of the invention, a groove or grooves of various possible shapes are formed in the lead frame itself by stamping, etching or the like. The groove surrounds all or part of the thermal pad so that any encapsulant traveling toward the center of the thermal pad freezes at the entrance to the groove and therefore acts as a block to the travel of encapsulant over the thermal pad. In some cases, the encapsulant may fill the groove and travels no further. As a second group of embodiments, the groove or grooves can be formed in the mold. As a third group of embodiments, ridges can be placed in the mold to prevent the movement of the encapsulant over the exposed surface of the thermal pad. As a fourth group of embodiments, ridges can be formed on the lead frame surface. In the case of the grooves, the encapsulant is either trapped in the grooves or freezes when entering a groove to inhibit further travel of encapsulant over the thermal pad surface. In the case of the ridges, the ridges rest against the surface of the mold, generally but not necessarily under compression, to act as a barrier to the travel of the encapsulant beyond the ridges and over the surface of the thermal pad. The action is the same as the groove but reversed in implementation.
In those instances wherein the features of the grooves are stamped into the lead frame, there can be swelling due to displaced material along the length of the groove and where the grooves meet at a corner. Greater swelling at corner intersections results in a failure to maintain the lead frame flat with the mold and permits encapsulant to travel to the thermal pad via longer straight line regions. The solution for stamped grooves was to pattern ends of grooves short of the corner or groove line segment such that swelling by displaced groove material created an effective swelling equivalent to the swelling of the straight line segments (see
FIGS. 13
,
13
a,
13
b
and
14
). Etched grooves do not introduce any swelling and can easily be patterned for any shape. However, etched grooves typically have a prohibitive cost for high volume.
Additionally, it is necessary to have a tool that is capable of forming the groove. The groove should be of sufficient depth to trap or freeze the encapsulant in the groove. The tool should be designed so as to control swelling of the thermal pad as the groove is being formed.
The grooves can take various shapes, examples of these shapes being “V,” check, sawtooth, square and rectangular, as well as a concave cup in the case of etching. The grooves will generally have a depth equal to about half of their lead frame material thickness. A minimum groove depth of about 1.5 to 2.5 mils can provide a suitable barrier to the encapsulant.
As a result of the subject invention, bleed control is provided by design into the lead frame or mold to provide lower cost and higher assembly throughout than is obtained by the prior art chemical deflash, mechanical deflash, liquid or tape masking or the pad/slug and by use of tape, chemical or special materials in the package mold.
The present invention requires no chemicals, wet processing or added plating cost. In addition, no processing is required which will degrade package reliability, and no additional assembly processes or materials are required. The palladium solderable finish, when used, is preserved over the lead frame, and the groove provides better ability for quality control inspection for mold bleed.
REFERENCES:
patent: 5557144 (1996-09-01), Rosenstock et al.
patent: 6001672 (1999-12-01), Wensel
patent: 6058602 (2000-05-01), Fehr
patent: 6249050 (2001-06-01), Wensel
Carter, Jr. Buford H.
Davis Dennis D.
Berry Renee R
Brady W. James
Nelms David
Swayze, Jr. W. Daniel
Telecky , Jr. Frederick J.
LandOfFree
Lead frame tooling design for bleed barrier groove does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Lead frame tooling design for bleed barrier groove, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lead frame tooling design for bleed barrier groove will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2987811