Layer manufacturing using focused chemical vapor deposition

Plastic and nonmetallic article shaping or treating: processes – Stereolithographic shaping from liquid precursor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S694000, C118S7230AN, C118S7230FE, C118S7230FI, C118S729000, C264S081000, C264S497000, C425S174400, C427S009000, C427S255280, C427S255500, C427S585000, C700S119000, C700S120000

Reexamination Certificate

active

06180049

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to a computer-controlled object-building system and, in particular, to an improved layer manufacturing system for building a three-dimensional object such as a model, molding tool, microelectronic device and micro-electromechanical system (MEMS).
BACKGROUND OF THE INVENTION
Solid freeform fabrication (SFF) or layer manufacturing is a new rapid prototyping and manufacturing technology. A SFF system builds an object layer by layer or point by point under the control of a computer. The process begins with creating a Computer Aided Design (CAD) file to represent the desired object. This CAD file is converted to a suitable format, e.g. stereo lithography (.STL) format, and further sliced into a large number of thin layers with the contours of each layer being defined by a plurality of line segments connected to form vectors or polylines. The layer data are converted to tool path data normally in terms of computer numerical control (CNC) codes such as G-codes and M-codes. These codes are then utilized to drive a fabrication tool for building an object layer by layer.
The SFF technology has found a broad range of applications such as verifying CAD database, evaluating design feasibility, testing part functionality, assessing aesthetics, checking ergonomics of design, aiding in tool and fixture design, creating conceptual models and sales/marketing tools, generating patterns for investment casting, reducing or eliminating engineering changes in production, and providing small production runs. Although most of the prior-art SFF techniques are capable of making 3-D form models on a macroscopic scale, few are able to directly produce a microelectronic device or micro-electromechanical system (MEMS) that contains micron- or nano-scale functional elements.
In U.S. Pat. No. 4,665,492, issued May 12, 1987, Masters teaches part fabrication by spraying liquid resin droplets, a process commonly referred to as Ballistic Particle Modeling (BPM). The BPM process includes heating a supply of thermoplastic resin to above its melting point and pumping the liquid resin to a nozzle, which ejects small liquid droplets from different directions to deposit on a substrate. Patents related to the BPM technology can also be found in U.S. Pat. No. 5,216,616 (June 1993 to Masters), U.S. Pat. No. 5,555,176 (September 1996, Menhennett, et al.), and U.S. Pat. No. 5,257,657 (November 1993 to Gore). Sanders Prototype, Inc. (Merrimack, N.H.) provides inkjet print-head technology for making plastic or wax models. Multiple-inkjet based rapid prototyping systems for making wax or plastic models are available from 3D Systems, Inc. (Valencia, Calif.). Model making from curable resins using an inkjet print-head is disclosed by Yamane, et al. (U.S. Pat. No. 5,059,266, October 1991 and U.S. Pat. No. 5,140,937, August 1992) and by Helinski (U.S. Pat. No. 5,136,515, August 1992). Inkjet printing involves ejecting fine polymer or wax droplets from a print-head nozzle that is either thermally activated or piezo-electrically activated. The droplet size typically lies between 30 and 50 &mgr;m, but could go down to 13 &mgr;m. This implies that inkjet printing offers a part accuracy on the order of 13 &mgr;m or worse which, for the most part, is not adequate for the fabrication of microelectronic devices.
Methods that involve deposition of metal parts from a steam of liquid metal droplets are disclosed in Orme, et al (e.g., U.S. Pat. No. 5,171,360) and in Sterett, et al. (U.S. Pat. No. 5,617,911). The method of Orme, et al involves directing a stream of a liquid material onto a collector of the shape of the desired product. A time dependent modulated disturbance is applied to the stream to produce a liquid droplet stream with the droplets impinging upon the collector and solidifying into a unitary shape. The method of Sterett, et al entails providing a supply of liquid metal droplets with each droplet being endowed with a positive or negative charge. The steam of liquid droplets is focused by passing these charged droplets through an alignment means, e.g., an electric field, to deposit on a target in a predetermined pattern. The deflection of heavy droplets of liquid metal by an electric field is not easy to accomplish. Further, a continuous supply of liquid metal droplets may make it difficult to prevent droplets from reaching “negative” regions (which are not portions of a cross-section of the object). A mask will have to be used to collect these un-desired droplets.
In U.S. Pat. No. 5,301,863 issued on Apr. 12, 1994, Prinz and Weiss disclose a Shape Deposition Manufacturing (SDM) system. The system contains a material deposition station and a plurality of processing stations (for mask making, heat treating, packaging, complementary material deposition, shot peening, cleaning, shaping, sand-blasting, and inspection). Each processing station performs a separate function such that when the functions are performed in series, a layer of an object is produced and is prepared for the deposition of the next layer. This system requires an article transfer apparatus, a robot arm, to repetitively move the object-supporting platform and any layers formed thereon out of the deposition station into one or more of the processing stations before returning to the deposition station for building the next layer. These additional operations in the processing stations tend to shift the relative position of the object with respect to the object platform. Further, the transfer apparatus may not precisely bring the object to its exact previous position. Hence, the subsequent layer may be deposited on an incorrect spot, thereby compromising part accuracy. The more processing stations that the growing object has to go through, the higher the chances are for the part accuracy to be lost. Such a complex and complicated process necessarily makes the over-all fabrication equipment bulky, heavy, expensive, and difficult to maintain. The equipment also requires attended operation.
The selected laser sintering or SLS technique (e.g., U.S. Pat. No. 4,863,538 issued in September 1989 to Deckard and U.S. Pat. No. 4,944,817 issued July 1990 to Bourell, et al.) involves spreading a full-layer of powder particles and uses a computer-controlled, high-power laser to partially melt these particles at desired spots. Commonly used powders include thermoplastic particles or thermoplastic-coated metal and ceramic particles. The procedures are repeated for subsequent layers, one layer at a time, according to the CAD data of the sliced-part geometry.
In a series of U.S. Patents (U.S. Pat. No. 5,017,317 in May 1991; U.S. Pat. No. 5,135,695 in August 1992; U.S. Pat. No. 5,169,579 in December 1992; U.S. Pat. No. 5,306,447 in April 1994; U.S. Pat. No. 5,611,883 in March 1997), Marcus and co-workers have disclosed a selected area laser deposition (SALD) technique for selectively depositing a layer of material from a gas phase to produce a part composed of a plurality of deposited layers. The SALD apparatus includes a computer controlling and directing a laser beam into a chamber containing the gas phase. The laser causes decomposition of the gas phase and selectively deposits material within the boundaries of the desired cross-sectional regions of the part. A major advantage of this technique is that it is capable of depositing a wide variety of materials to form an object on a layer by layer basis. The prior art SALD technique, however, is subject to the following shortcomings:
(1) Just like most of the prior-art layer manufacturing techniques, the SALD technique is largely limited to producing parts with homogeneous material compositions. Although, in principle, SALD allows for variations in the material composition from layer to layer, these variations can not be easily accomplished with the prior art SALD apparatus. For instance, upon completion of depositing a layer, the remaining gas molecules must be evacuated out of the build chamber, which is then filled with a second gas phase composition. This would be a slow and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Layer manufacturing using focused chemical vapor deposition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Layer manufacturing using focused chemical vapor deposition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Layer manufacturing using focused chemical vapor deposition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2553663

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.