Layer insulating film for multilayer interconnection, resin...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From carboxylic acid or derivative thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S335000, C528S337000

Reexamination Certificate

active

06423815

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a layer insulating film for multilayer interconnection of semiconductors which comprises a fluorine-containing polybenzoxazole resin, and a process for producing the resin used therefor.
Inorganic insulating films using silicon dioxide formed by the chemical vapor deposition method, etc. have been in use as a material for layer insulation. However, though the films have a high heat resistance, they have not sufficiently good performance characteristics to meet the requirements related to semiconductor uses of recent years.
On the other hand, polyimide resins have been extensively studied as an organic insulating film which exhibits an excellent flatness and low dielectric constant, but they have a problem in resistance to moisture absorption and hence cannot be considered to have satisfactory performance characteristics as a material for layer insulating film.
Similar studies have also been made of polybenzoxazole resins. One of the processes for producing polyhydroxyamide resin, the precursor of polybenzoxazole resin, is an acid chloride method which allows a dicarboxylic acid dichloride to react with a bis(aminophenol) compound; but since chloride ions formed in the course of the synthesis get mixed as an impurity, the resulting resin is not so much preferable for use as a semiconductor material. Another method which does not involve the risk of contamination by chloride ions is the DCC method which uses dicyclohexylcarbodiimide (hereinafter abbreviated as DCC) and directly obtains polyhydroxyamide resin from a dicarboxylic acid and a bis(aminophenol) compound. However, when a material of low reactivity as 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane is used in the DCC method, the polyhydroxyamide resin obtained has a low molecular weight, and does not have satisfactory heat resistance, strength, etc.
SUMMARY OF THE INVENTION
The object of the present invention is, overcoming the above-mentioned problems of the prior art, to provide a layer insulating film for multilayer interconnection of semiconductors excellent in resistance to heat, resistance to moisture absorption and additionally excellent in electric characteristics and a process for producing a resin used therefor.
The present inventors have made extensive study to solve the above-mentioned problems of previous layer insulating film material for multilayer interconnection. As a result, the inventors have found a fluorine-containing polybenzoxazole resin excellent in resistance to heat, resistance to moisture absorption and further in electric characteristics having the structure represented by the formula (6) and obtained by a production process which comprises subjecting to heat-dehydrating ring-closure (A) a fluorine-containing polyhydroxyamide resin having the structure represented by the formula (1) and obtained by reacting a dicarboxylic acid diester obtained by purifying a product obtained by the reaction of at least one kind of compound selected from the group of compounds represented by-the formulas (2) with 2,2′bis-(trifluoromethyl-4,4′
1
-biphenyldicarboxylic acid, with 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane; or (B) a fluorine-containing polyhydroxyamide resin obtained by reacting a product obtained by replacing less than 50% by mole of 2,2′-bis(trifluoromethyl)-4,4′-biphenyldicarboxylic acid diester by a dicarboxylic acid diester obtained by purifying a product obtained by the reaction of a dicarboxylic acid represented by R of the formula (3) with one kind of compound selected from the group of compounds represented by the formulas (2), with a product obtained by replacing less than 50% by mole of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane by a bisaminophenol represented by R′of the formula (3). The present invention has been accomplished on the basis of the above finding.
wherein m is an integer of 10-500,
wherein X and Y each independently represent a structure selected from the formulas (4),
wherein Z represents a structure selected from the formulas (5), provided that the hydrogen atom(s) on the benzene ring in these structures may be substituted with at least one member selected from the group consisting of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, fluorine atom and trifluoromethyl group.
wherein, in the formula (6), m is an integer of 10-500.
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the fluorine-containing polyhydroxyamide resin having the structure represented by the formula (1) is produced by the reaction of a diamine component and a dicarboxylic acid component, the diamine component used being 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane.
The dicarboxylic acid component used is a dicarboxylic acid diester obtained by the reaction of 2,2′-bis-(trifluoromethyl)-4,4′-biphenyldicarboxylic acid with one kind of compound selected from the group of compounds represented by the above-mentioned formulas (2), e.g., 1-hydroxybenzotriazole, 4-nitro-phenol, 2-mercaptobenzoxazole, and the like. Among the group of compounds represented by the formulas (2), more preferably be used is 1-hydroxybenzotriazole.
As to the diamine component, the intended effect of the present invention can be attained also when a part of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane is replaced by a bisaminophenol compound represented by R′of the formula (3), provided that the replaced part must be less than 50% in terms of molar ratio of monomer. The bisaminophenol compound represented by R′of the formula (3) may be, for example, 2,4-diaminoresorcinol, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 1,4-bis(3-amino-4-hydroxyphenyl)tetrafluorobenzene, 3,3′-diamino-4,4′-dihydroxybiphenyl, 3,3′-diamino-5,5′, 6,6′-tetrafluoro-4,4′-dihydroxybiphenyl, 2,2-bis(3-amino-4-hydroxy-5-trifluoromethylphenly)hexafluoropropane, 2,2-bis(4-amino-3-hydroxy-5-trifluoromethylphenyl)hexafluoropropane, 2,2-bis(3-amino-4-hydroxy-5-pentafluoroethylphenyl)hexafluoropropane, 2-(3-amino-4-hydroxy-5-trifluoromethylphenyl)-2-(3-amino-4-hydroxy-5-pentafluoroethylphenyl)hexafluoropropane, etc., but it is not limited thereto.
As to the dicarboxylic acid component, like in the case of the bisaminophenol compound, the intended effect of the present invention can be attained also when a part of 2,2′-bis(trifluoromethyl)-4,4′-biphenyldicarboxylic acid is replaced by a dicarboxylic acid represented by R of the formula (3), provided that the replaced part must be less than 50% in terms of molar ratio of monomer. The dicarboxylic acid represented by R of the formula (3) may be, for example, 5-fluoroisophthalic acid, 2-fluoroisophthalic acid, 3-fluorophthalic acid, 4-fluorophthalic acid, 2-fluoroterephtalic acid, 2,4,5,6-tetrafluoroisophthalic acid, 3,4,5,6-tetrafluorophthalic acid, 4,4′-hexafluoroisopropylidenediphenyl-1,1′-dicarboxylic acid, perfluorosuberic acid, terephthatic acid, isophthalic acid, 4,4′-oxydiphenyl-1,1′-dicarboxylic acid, etc., but it is not limited thereto.
For the synthesis of the dicarboxylic acid diester in the present invention, 2,2′-bis(trifluoromethyl)-4,4′-biphenyldicarboxylic acid and one kind of compound selected from the group of compounds represented by the above-mentioned formulas (2) are dissolved in an anhydrous organic solvent, such as 1,4-dioxane, ethyl acetate, tetrahydrofuran, dimethylformamide, N-methyl-2-pyrrolidone, etc., preferably a condensing agent such as dicyclohexylcarbodiimide, etc., is added thereto at −10 to 5° C., and thereafter the resulting mixture is allowed to react preferably at 15 to 25° C. for 18-24 hours.
The reaction mixture thus obtained is filtered, the filtrate is concentrated by means of an evaporator, a poor solvent, such as diethyl ether, petroleum ether, hexane, etc., is added to the concentrate, and the product thus precipitated is recovered by filtration. Further, the product is mixed with

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Layer insulating film for multilayer interconnection, resin... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Layer insulating film for multilayer interconnection, resin..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Layer insulating film for multilayer interconnection, resin... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2867075

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.