Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
2002-09-17
2003-11-04
Lu, Caixia (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S161000, C526S164000, C502S165000, C502S103000, C502S117000, C502S167000
Reexamination Certificate
active
06642327
ABSTRACT:
FIELD OF THE INVENTION
The invention is directed towards a late transition metal polymerization catalyst complex and its use in forming polymers from olefins or polar monomers and copolymers from olefins and polar monomers.
BACKGROUND
Polymers and copolymers may be formed from olefinic monomers by using transition metal catalyst technology. Ziegler-Natta catalysts have been used for many years while in more recent years metallocene catalysts have been preferred in certain applications since the polyolefins produced via metallocene catalysis often possess superior properties. The most well-known metallocene technology employs catalysts containing early transition metal atoms such as Ti and Zr.
Even though polyolefins formed by such metallocene catalysts possess certain enhanced properties over polyolefins produced by conventional Ziegler-Natta catalysts, further improvements in properties such as wettability and adhesiveness may be possible. It is believed that including polar monomers in an olefinic polymer or copolymer would improve these, and possibly other, properties. Unfortunately, polar monomers tend to poison early transition metal catalysts.
Certain late transition metal complexes such as those containing palladium and nickel, are more forgiving when incorporating certain polar monomers. However, most of these catalyst compositions are costly and produce highly branched polymers (e.g., 85-150 branches/1000 carbon atoms). Also, the functionalities are not in the chain but at the ends of branches. Consequently, they are limited to polar monomer contents to about 15 mol % or less. Another disadvantage of these compositions is that they incorporate only a limited number of polar monomers such as alkyl acrylates and vinyl ketones.
Recently, novel late transition organometallic catalysts have been made to address the aforementioned problems. More specifically, U.S. Pat. No. 6,037,297 to Stibrany et al., herein incorporated by reference, details group 11 metal (Cu, Ag and Au) containing catalyst compositions having a pseudotetrahedral geometry that are useful in forming polymers and copolymers having hydrocarbyl polar functionality.
However, there is still a need to explore other group 11 metal complexes for use in polymerization processes. Ideally, these late transition metal complexes should be capable of forming olefinic polymers and copolymers containing polar monomers which are not highly branched, have polymer chain functionality and are capable of incorporating a wider variety of polar monomers.
SUMMARY
The instant invention provides a late transition metal complex which can be used with an activating cocatalyst to produce polymers and copolymers. Also, like the invention described in U.S. Pat. No. 6,037,297, the instant invention can be used to produce polymers and copolymers containing polar monomers.
In one embodiment, the invention is a composition having the formula LMXZ
n
wherein X is selected from the group consisting of halides, hydride, triflate, acetates, borates, C
1
through C
12
alkyl, C
1
through C
12
alkoxy, C
3
through C
12
cycloalkyl, C
3
through C
12
cycloalkoxy, aryl, thiolates, carbon monoxide, cyanate, olefins, and any other moiety into which a monomer can insert. M is selected from the group consisting of Cu, Ag, and Au. L is a nitrogen-containing bidentate ligand with more than two nitrogen atoms. Z is a neutral coordinating ligand and n equals 0, 1, or 2.
In another embodiment, the invention is a catalyst composition comprising the reaction product of: a metal complex having the formula LMXZ
n
, as described above, and an activating cocatalyst. This embodiment of the invention is particularly useful in polymerization chemistry.
In yet another embodiment, the invention provides a method for using the composition to produce polymers and copolymers which contain polar monomer units. The method includes contacting the monomers under polymerization conditions with a catalyst composition comprising a composition having the formula LMXZ
n
, as defined above, and an activating cocatalyst. Optionally, an oxidizing agent may also be employed during this process.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description and appended claims.
DESCRIPTION
The invention relates to a novel metal complex which, when used with an activating cocatalyst, provides a novel catalyst composition. The invention also provides a polymerization method which utilizes the catalyst composition. Generally speaking, the method of the invention produces polymers and copolymers containing polar monomer groups.
In one embodiment, the invention comprises a composition comprising the formula LMXZ
n
wherein X is selected from the group consisting of halides, hydride, triflate, acetates, borates, C
1
through C
12
alkyl, C
1
through C
12
alkoxy, C
3
through C
12
cycloalkyl, C
3
through C
12
cycloalkoxy, aryl, thiolates, carbon monoxide, cyanate, olefins, and any other moiety into which a monomer can insert; M is selected from the group consisting of Cu, Ag, and Au; L is a nitrogen-containing bidentate ligand with more than two nitrogen atoms; Z is a neutral coordinating ligand; wherein n equals 0, 1, or 2.
The geometric configuration of the metal complex of the instant invention can be either pseudotetrahedral or trigonal planar depending on the value of n (i.e., n can equal 0, 1 or 2). It should be appreciated by those skilled in the art that although the term “pseudotetrahedral” is used to describe the geometric structure of the metal complex, it does not exclude a pure “tetrahedral” geometrical arrangement. The prefix “pseudo” is used throughout the specification to most accurately describe the non-limiting embodiments described herein. Similarly, the term “trigonal planar” should be understood by those skilled in the art to also include geometric configurations which are approximately trigonal planar.
When the metal composition is reacted with an activating cocatalyst such as methyl alumoxane (a.k.a., “MAO”) a catalyst composition is created. Thus, in another embodiment, the invention is a catalyst composition comprising the reaction product of: (a) A metal complex having the formula LMXZ
n
wherein X is selected from the group consisting of halides, hydride, triflate, acetates, borates, C
1
through C
12
alkyl, C
1
through C
12
alkoxy, C
3
through C
12
cycloalkyl, C
3
through C
12
cycloalkoxy, aryl, thiolates, carbon monoxide, cyanate, olefins, and any other moiety into which a monomer can insert; M is selected from the group consisting of Cu, Ag, and Au; L is a nitrogen-containing bidentate ligand with more than two nitrogen atoms; Z is a neutral coordinating ligand; where n equals 0, 1, or 2; and (b) an activating cocatalyst.
Furthermore, by controlling the temperature, catalyst loading, ligand structure, and residence time, product selectivity can be adjusted to produce individual polymers and copolymers with high selectivity. Hence, in yet another embodiment, the invention provides a method for producing polymers and copolymers.
Ideally, Z is weakly coordinating and sufficiently labile to allow activation of the catalyst. In a preferred embodiment composition, for each occurrence of Z, each Z is independently selected from the group consisting of diethylether, tetrahydrofuran, acetonitrile, benzonitrile, dioxane, acetone, 2-butanone, phenylisocyanate, ethylene, carbon monoxide, 1-hexene, and norbornene.
In another preferred embodiment of this invention is a complex having the formula LMXZ
n
, as described above, where L is a nitrogen-containing bidentate ligand represented by the formula:
[ARA′] and [AA′],
wherein A and A′ are independently selected from the group consisting of
wherein R1 is independently selected from the group consisting of hydrogen, C
1
through C
12
straight chain or branched alkyl, C
3
through C
12
cycloalkyl, aryl, and trifluoroethane;
R2 and R3 are independently selected from the group consisting of hy
Kacker Smita
Stibrany Robert T.
Brumlik Charles J.
ExxonMobil Research and Engineering Company
Lu Caixia
Wang Joseph C.
LandOfFree
Late transition metal complexes, their use as catalysts and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Late transition metal complexes, their use as catalysts and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Late transition metal complexes, their use as catalysts and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3185070