Late addition of PUFA in infant formula preparation process

Food or edible material: processes – compositions – and products – Surface coating of a solid food with a liquid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S443000, C426S601000, C426S602000, C426S800000, C426S801000

Reexamination Certificate

active

06428832

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of nutrition, especially the field of infant nutrition. In particular, it relates to foods containing at least one polyunsaturated fatty acid (PUFA), such as an infant formula.
BACKGROUND OF THE INVENTION
Recently, the importance of the addition of polyunsaturated fatty acids (PUFA's) to infant formulas has been acknowledged (see for instance U.S. Pat. No. 4,670,285 and European Patent Publications EP-A-0231 904 and EP-A-0404056).
Infant formula is usually prepared by the following general process.
1. Pasteurised milk (skimmed, evaporated or whole milk) is standardised by the addition of whey protein concentrate, minerals, water-soluble vitamins, trace elements and carbohydrates at, high temperatures, for example 60° C.
2. Vegetable oil, oil-soluble emulsifiers, oil-soluble vitamins and anti-oxidants are mixed at high temperatures, for example 60° C.
3. The oil mixture obtained from 2 (an oil phase) is added to the standardised milk obtained from 1 (a water phase) with sufficient agitation to allow mixing.
4. The mixture obtained in 3 is homogenised in two stages at high temperature and pressure, for example 60° C. at 150 and 30 bar.
5. The emulsion obtained under 4 is cooled to a low temperature, for example 5° C.
6. If desired, water-soluble vitamins, minerals and trace elements are added to the cooled emulsion.
7a. Emulsion 6 is sterilised in-line at ultra high temperature (UHT) and/or in appropriate containers to obtain a formula in the form of a sterile liquid; or
7b. Emulsion 6 is pasteurised and spray dried to give a spray dried powder which is filled into appropriate containers.
8. If desired, other dry ingredients, e.g. vitamins, minerals, trace elements, whey protein concentrate and carbohydrates can be added to the spray dried powder from 7b.
Thus at several points in the infant formula preparation process high temperatures and pressures are used, for example during the following process steps:
melting and blending fats it the oil phase (2)
dissolving oil soluble emulsifiers in the oil phase before homogenisation (2);
pasteurisation before homogenisation (in 4);
homogenisation (4);
sterilisation (7a);
pasteurisation, after homogenisation (7b); and/or
spray drying, if performed (7b).
Typically, the PUFA's which are used for the supplementation of infant formula are in a triglyceride, phospholipid, fatty acid or fatty acid ester form and are oily liquids. The most convenient way to disperse PUFA-containing lipids homogeneously is by mixing them in with the oil phase before the homogenisation step. Thus, currently, the PUFA-containing lipid is added to the oil phase, because the PUFAs are usually contained in lipids which themselves are oils. This is much easier than trying to homogeneously disperse the PUFAs in the formula at a later stage, especially once the emulsion in (3) has been formed.
DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention there is provided a process for the preparation of a foodstuff comprising a polyunsaturated fatty acid (PUFA), the process comprising:
a) providing an oil phase and an aqueous phase;
b) mixing the oil and aqueous phases to obtain an emulsion;
c) optionally, drying the emulsion to obtain a dried material; and
d) adding at least one PUFA (to the dried material).
A second aspect of the present invention relates to a foodstuff prepared by the process of the first aspect.
It will thus be seen that in the invention the PUFA is added at a relatively late stage in the preparation of the foodstuff. The advantage of this is that the or each PUFA (there may be more than one) is minimally exposed to conditions which can cause degradation.
There are usually three main causes of degradation during a conventional foodstuff preparation process that contains a PUFA. These are heating, drying and homogenization. Heating can take place at a number of places during prior art preparative processes. This includes heating of the oil phase, as well as heating during homogenization and sterilisation, and of course pasteurisation. The process of the invention seeks to minimise the exposure of the PUFAs to these various steps in order to maximise the preservation of the PUFA, and therefore to minimise degradation. Thus, the invention at its broadest can be regarded as a process for producing a PUFA-containing foodstuff, where at least one PUFA in added at a stage after one or more potentially PUFA-degrading stage(s) have occurred. The PUFA may therefore be added after one or more heating and/or drying stages.
This is entirely contrary to conventional wisdom, where the (PUFA) has, until now, been added to the, starting oil blend, because of course the. PUFA itself is an oil (and therefore there is no phase separation problem). It can be particularly difficult to disperse the PUFA for example, after the emulsification in (b), and so previously foodstuff manufacturers have tended to add the PUFA at the oil blend stage.
In addition, for existing foodstuff manufacturers, if it is decided to supplement the previously (non-PUFA containing) foodstuff with a PUFA, then this can easily be accomplished by adding the PUFA to the oil phase in (a). The reason for this in that one does then not need to significantly change the production plant, or significantly modify the process. Thus, since in recent times. PUFAs have been found to be advantageous in, for example, infant formulas, the PUFAs have been added to the oil phase in existing processes.
It in not until the present invention that it has been restaged that adding the PUFA at such an early stage can have disadvantages, because the PUFA becomes degraded. The invention may therefore provide a solution to the problem of preparing a PUFA-containing foodstuff where the PUFA is subjected to as few as possible degrading stages.
The PUFA can thus be added at a later stage than in a prior art process for the preparation for the foodstuff. This can then minimise the PUFAs exposure to unfavourable conditions. Preferably, the PUFA is added after the drying step in (c). This drying may comprise spray drying.
The foodstuff is preferably one that is suitable for humans, such as babies and/or infants. It may therefore be an infant formula. Such a formula will usually comprise milk. However, the foodstuff may be a milk or milk substitute. The foodstuff can therefore be a powdered milk product.
The foodstuff can be a solid, in which case it is preferably dried, and optimally in the form of a powder. Preferably, it is miscible or dispersible in an aqueous liquid, such as water. Such foodstuffs may therefore produce a milk-like product on addition to water.
The foodstuff can also be in a liquid form (e.g. in the case of an infant formula), which is ready for use, or a concentrated liquid from which can be diluted before use with water. If the foodstuff is a liquid then the drying stage (c) can be omitted.
Alternatively, the infant formula may be a powdered product, in which case this can be added to water. (The resulting liquid composition is often then warmed, e.g. to 35° C., before administration). In a solid form, foodstuff may not only be an infant formula, but may be a milk powder suitable for addition to coffee, tea, chocolate or other such beverages.
The PUFA can be added in a variety of forms. It may be added as part or a component of a liquid or solid composition. If liquid, this may be a lipid composition and/or an oil. The oil may contain solely the PUFA or it may contain a number of other ingredients. If a solid composition is used, the PUFA may, be encapsulated in capsules or it maybe in a powdered form, for example coated onto a solid carrier. For these latter forms reference is made to the copending International patent application filed on the same day as this case, in the name of Gist-brocades B.V., entitled “PUFA coated solid carrier particles for foodstuff”,
Suitable microencapsulation techniques are, for example, described in WO-A-94/01001.
The PUFA-containing composition, if a lipid, can be an oily liquid.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Late addition of PUFA in infant formula preparation process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Late addition of PUFA in infant formula preparation process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Late addition of PUFA in infant formula preparation process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2919481

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.