Latching magnetic relay assembly

Electricity: magnetically operated switches – magnets – and electr – Electromagnetically actuated switches – Multiple contact type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C335S106000, C335S107000, C335S127000, C335S132000

Reexamination Certificate

active

06563409

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to electromagnetic relays, more particularly, to a latching magnetic relay assembly with two electrically separated excitation coils capable of handling current transfers of up to and greater than 200 amps.
2. Description of the Prior Art
There are a few designs for latching magnetic relay assemblies currently in the prior art. These latching magnetic relay assemblies typically include a relay motor assembly that is magnetically coupled to an actuation assembly. The actuation assembly is then operatively coupled to a contact spring that is positioned opposite a pair of conductively isolated contact points. The relay motor typically drives the actuation assembly which in turn drives the contact spring into contact with a pair of contact points positioned directly across from it.
The conductive springs typically serve a dual purpose. They ensure good contact with the contact points, and they form a conductive pathway between the contact points. Conductive springs are typically made of copper or a copper alloy, the copper alloys typically have lower conductivity than plain copper. Plain copper can typically sustain less than 20 amps per square millimeter without causing excess heat build up in the copper. Excess heat build up in the conductive springs will cause the conductive spring to lose their spring property. This results in a loss of contact pressure, which leads to increased contact resistance which in turn causes the relay to fail. Consequently, most latching magnetic relays can only sustain currents of less than 20 amps per square millimeter through their copper conductive springs.
In order to increase current density while minimizing the heat generated by higher currents only two options are currently available. One is to make the conductive spring wider, requiring an increase in the size of the relay and increasing the bending force needed by the actuator assembly and the relay motor. The other option to increase the thickness of the spring which will also increase the bending force needed by the actuator assembly and the relay motor. Consequently, typical latching magnetic relays are not particularly suited for applications which require higher current flows of up to 100 amps.
U.S. Pat. No. 4,092,620 issued to Schuessler et al. discloses an electrical connection for the moving contacts of a relay. This invention provides an improved electrical connection for the moving contacts of a relay which simplifies the assembly operation. Specifically, this invention provides an electrical connection between a contact pin in the header of a relay and the pivoting blades supporting the moving contacts of the relay switch. The electrical connection is in the form of a cantilever spring contact having one end attached permanently to a contact pin by a supporting bracket, the cantilevered spring extending substantially parallel to the blade supporting the moving contacts of the switch. The free end of the cantilever spring is formed with a curved projecting portion which is urged by the spring against the surface of the contact blade adjacent the pivotal axis of the blade.
U.S. Pat. No. 4,101,855 issued to Drapeau discloses a miniature relay. This invention provides a miniature relay comprising an electromagnet assembly including a coil carried by a magnetic frame, the electromagnet being fixed to a supporting member of non-magnetic material which, in turn, is fixed to a header containing an assembly of stationary and movable contact members electrically coupled to terminal pins extending through the header. The magnetic frame includes a core portion extending longitudinally through and beyond the coil and terminating in an end facing the header, and the frame also includes a pole piece portion operatively associated with the coil. An armature is held in position by cooperation between a pair of spaced-apart holding elements extending from the electromagnet assembly and a portion of the armature shaped and dimensioned to fit in the region between the holding elements. The spaced-apart holding elements provide a saddle for the armature portion, and the armature is continuously urged into that saddle by biasing means carried by the header. The pull in force of the electromagnet can be enhanced by a mating tab and notch configuration in cooperating portions of the armature and pole piece or by a pole piece end portion disposed to present increased surface area to the armature.
U.S. Pat. No. 4,795,994 issued to Hoffmann discloses an electromechanical DC-RF relay. This invention includes a structure for an electromagnetic relay that provides high reliability and resistance to environmental extremes of shock, acceleration, vibration, temperature, and humidity, while providing a fast acting relay action in a configuration suitable for signal frequencies from DC to about 8 GHz. This invention includes a slider comprising a permanent magnet embedded in a non-conductive material slotted to loosely receive a mid-portion of at least one contact reed. One end of the contact reed is pivotally connected to an input pin of the relay, such that the contact reed can pivot from a first position to a second position while remaining in electrical contact with the input pin. The slider is situated such that the other end of the contact reed is normally in electrical contact with a first output pin, held there by magnetic attraction of the permanent magnet to the relay electromagnet. When the electromagnet of the relay is activated, the slider is repelled from the electromagnet, causing the contact reed to be pivoted away from the first contact pin until it stops in electrical contact against a second output pin. The contact reed slides within the slot of the slider as the contact reed pivots. No hard-stop adjustment or other adjustment is needed.
U.S. Pat. No. 5,546,061 issued to Okabayashi et al. discloses a plunger type electromagnetic relay with arc extinguishing structure. According to one aspect of this invention, there is provided an electromagnetic relay which comprises a movable contact retainer having disposed thereon a pair of movable contacts, a stationary contact retainer having disposed thereon a pair of stationary contacts at a given interval away from the movable contacts, a magnetically driving means for selectively driving the stationary contact retainer to bring the stationary contacts into engagement with and disengagement from the movable contacts, and a pair of permanent magnets having magnetic poles oriented opposite each other across the pair of the movable contacts retained on the movable contact retainer. According to another aspect of this invention, there is provided an electromagnetic relay which comprises a movable contact retainer having disposed thereon a pair of movable contacts, a stationary contact retainer having disposed thereon a pair of stationary contacts at a given interval away from the movable contacts, a magnetically driving means for selectively driving the stationary contact retainer to bring the stationary contacts into engagement with and disengagement from the movable contacts, and a pair of permanent magnets having magnetic poles oriented, in alignment with a current flow through the movable contact retainer, diametrically opposite each other across the pair of the movable contacts retained on the movable contact retainer.
U.S. Pat. No. 5,880,655 issued to Dittmann et al. discloses an electromagnetic relay. The relay of this invention includes a coil assembly enclosed in a top enclosure made from insulating material. The coil assembly includes a spooled coil body, a core, pole shoes and winding terminal elements assembly and is disposed above a pivoting armature which is connected to contact springs via a carrier element of insulating material. The relay of this invention also includes a base made from insulating material and which contains terminal paths for stationary cooperating contact elements as well as contact terminal elements. The armature is disposed a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Latching magnetic relay assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Latching magnetic relay assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Latching magnetic relay assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3079649

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.