Laser-markable plastics

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S449000, C524S430000

Reexamination Certificate

active

06545065

ABSTRACT:

The present invention relates to laser-markable plastics of which a feature is that they include, as absorber material, a mixture of pearl lustre pigments and/or non-lustrous metal oxide-coated mica pigments and inorganic platelet-form substrates.
The labelling of production goods is becoming increasingly important in almost all sectors of industry. For example, it is frequently necessary to apply production dates, expiry dates, barcodes, company logos, serial numbers, etc. At present, these marks are predominantly made using conventional techniques such as printing, embossing, stamping and labelling. However, the importance of non-contact, high-speed and flexible marking using lasers is increasing, especially in the case of plastics. This technique makes it possible to apply graphic inscriptions, for example barcodes, at high speed even on a non-planar surface. Since the inscription is within the plastics article itself, it is durable and abrasion-resistant.
Many plastics, for example polyolefins, have hitherto proved to be very difficult or even impossible to mark by means of lasers. A CO
2
laser which emits light in the infrared region at 10.6 &mgr;m produces only a faint, barely legible mark in the case of polyolefins, even at very high output levels, since the absorption coefficient of the plastics to be processed is not high enough at these wavelengths to induce a colour change in the polymeric material. The plastic must not completely reflect or transmit the laser light, since if it did there would be no interaction. However, it must also not be too high a level of absorption, since in this case the plastic evaporates to leave only an engraving. The absorption of the laser beams and thus the interaction with the material depends on the chemical structure of the plastic and on the laser wavelength used. In many cases it is necessary to add appropriate additives, for example absorbers, in order to render plastics laser-inscribable.
The article “Pearl Lustre Pigments—Characteristics and Functional Effects” in Speciality Chemicals, May 1982, Vol. 2, No. 2 discloses the use of pearl lustre pigments for laser marking. Pearl lustre pigments, however, have the disadvantage that they alter very severely the colour properties of the plastic, an effect which is often unwanted.
In DE-C-29 36 926, plastics are marked with the aid of fillers whose colour can be altered.
DE-A 29 36 926 discloses that the inscription of a polymeric material by means of laser light can be achieved by adding to the plastic a filler, such as carbon black or graphite, which discolours on exposure to energetic radiation.
The fillers known for laser marking, however, have the disadvantage either that they durably colour the plastic to be inscribed, as a result of which the laser inscription, which is usually a dark script on a paler background, is then no longer sufficiently high in contrast—i.e. legible—or that, as for example with kaolin, the marking is very faint and only becomes readily visible when high quantities of the additive are employed.
In the laser marking of polyethylene, for example, the contrast of a marking is found to depend on the energy density of the laser, in the sense that a higher energy density produces darker markings. In polypropylene, which generally gives light markings at low energy densities, somewhat darker markings can only be obtained with extremely high energy densities.
Using the absorbers known from the prior art, and especially at average colouring lightnesses (L values of between 10 and 80), it is possible only to obtain markings which are difficult to read, and it is impossible to obtain, at the same time, two-colour (light and dark) markings.
The object of the present invention, therefore, was to find laser-markable plastics which enable a two-coloured high-contrast laser marking to be obtained on exposure to laser light and which make it possible, given appropriate choice of the laser energy densities, to obtain light and dark markings in one colouring operation. In this context, the filler or successful absorber should have a very pale, neutral inherent colour and should possess the properties of the precoloured plastic to be marked, or should need to be employed only in small amounts.
It has surprisingly been found that a mixture of pearl lustre pigments and/or non-lustrous metal oxide-coated mica pigments and inorganic platelet-form substrates make it possible in medium colourations to obtain high-contrast, high-definition and two-coloured markings.
The invention therefore provides laser-markable plastics, characterized in that they comprise a mixture of pearl lustre pigments and/or non-lustrous metal oxide-coated mica pigments and inorganic platelet-form substrates in medium colourations.
Through the addition of this pigment mixture in concentrations of from 0.5 to 10% by weight, based on the plastics system, preferably from 1 to 5% by weight and, in particular, from 1.5 to 3% by weight, a high contrast is achieved in laser marking. The concentration of the pigments in the plastic, however, is dependent on the plastics system employed and on the energy density of the CO
2
laser. The relatively low proportion of pigment does not substantially alter the plastics system and does not affect its ability to be processed. The mixture of pearl lustre pigment and/or non-lustrous metal oxide-coated mica pigments and inorganic platelet-form substrates can be employed in virtually all conceivable proportions. Mixtures of one part of pearl lustre pigment and 1-10 parts of inorganic platelet-form substrates, preferably 2-8 parts, in particular 3-5 parts, of the inorganic platelet-form substrates, have proven to be particularly suitable.
Transparent plastics doped with such pigments in pure colouration mostly show a slightly metallic gleam but retain their transparency. Through the addition of from 0.2 to 10% by weight, preferably from 0.5 to 3% by weight, of opaque pigments, for example titanium dioxide, this metallic lustre can, if required, be masked completely. Moreover, it is possible to add colour pigments to the plastics that permit colour variations of any kind and at the same time ensure that the laser marking is retained.
The inorganic platelet-form substrates suitable for the marking are SiO
2
flakes, phyllosilicates, such as calcine and non-calcine mica, glass, talc, kaolin or sericite, while particularly preferred micas employed are muscovite, biotite, phlogopite, vermiculite and also synthetic micas. As phyllosilicate it is preferred to employ mica. The phyllosilicates have particle sizes of 1-150 &mgr;m, preferably 5-60 &mgr;m.
All known pearl lustre pigments can be used as absorber material, as are described, for example, in the German Patents and Patent Applications 14 67 468, 19 59 998, 20 09 566, 22 14 545, 22 15 191, 22 44 298, 23 12 331, 25 22 572, 31 37 808, 31 37 809, 31 51 343, 31 51 354, 31 51 355, 32 11 602, 32 35 017 and 38 42 330. Particular preference, however, is given for the use of pearl lustre pigments based on mica flakes coated with metal oxides, especially titanium dioxide and/or iron oxide. Non-lustrous, metal oxide-coated mica pigments are known from DE 43 40 146 and DE 19 546 058.
As absorber material it is also possible to employ a combination of a mixture of different phyllosilicates and/or one or more pearl lustre pigments.
For the laser marking it is possible to employ all known plastics, as described, for example, in Ullmann, Vol. 15, p. 457 et seq., Verlag VCH. Examples of suitable plastics are polyethylene (PE), polypropylene (PP), polyesters, polyphenylene oxide, polyacetal, polybutylene terephthalate, polymethyl methacrylate, polyvinyl acetal, acrylonitrile-butadiene-styrene (ABS), acrylonitrile-styrene-acrylate (ASA), polycarbonate, polyether sulfone, polyether ketones and their copolymers and/or mixtures thereof. Polyolefins are particularly suitable owing to their mechanical properties and the inexpensive processing techniques.
Preference is given to the use of PE-HD, PE-LD, PE-LLD and PP and also copolymers of PE and of PP

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laser-markable plastics does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laser-markable plastics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser-markable plastics will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3029002

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.