Electric heating – Metal heating – By arc
Reexamination Certificate
1999-05-27
2002-04-23
Evans, Geoffrey S. (Department: 1725)
Electric heating
Metal heating
By arc
C219S121680, C219S121730
Reexamination Certificate
active
06376799
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a laser machining apparatus that can provide high precision machining of fine patterns and that is suitable for use in mass production, and to a laser machining method therewith. The present invention also relates to a high quality liquid crystal display panel having an electrode structure that is patterned by this laser machining method.
2. Background Art
There are various types of known laser machining apparatus. These include a CO
2
laser apparatus that is a popular technique to cut or bore a metal plate, and a YAG laser apparatus that is broadly used to perform high precision machining of a thin metal sheet. In particular, the YAG laser apparatus is a useful tool for various kinds of high precision machining owing to its small size, easy maintenance, and high performance that can readily provide a laser beam focused into a spot with a diameter of a few tenths of a micron. Another advantage of the YAG laser is that the second harmonic wave (at a wavelength of 532 nm) is available to perform precision machining on a thin film using the ablation effect. The “ablation” means here an effect that when a macromolecular material is illuminated with a short-pulse laser beam with a short wavelength such as an eximer laser or YAG harmonic laser, the illuminated portion is instantaneously decomposed, vaporized, and scattered, whereby the portion illuminated with the laser beam is removed. In fact, Q-switched YAG lasers are used in various applications such as correction of defects of a semiconductor production mask, patterning of detecting portions of a thin film sensor, patterning of electrodes of a liquid crystal display panel, etc. The Q-switched laser is preferably used in these application fields because it can provide a laser beam with a high peak power for a short pulse duration thereby performing high quality machining on a material to be machined without giving thermal damage. For further detailed information on the ablation machining technique, refer to “Application of a Short-Wavelength Short-Pulse Laser to Ablation Machining” (The Journal of the Institute of Precision Engineering, Vol.3, pp.473-478 (1993)).
One of important applications of thin film machining techniques is patterning of transparent electrodes of a liquid crystal panel, in which high quality machining and high machining capability are required. In general, electrodes of a liquid crystal panel are patterned by illuminating a transparent conductive film coated on a substrate with a laser beam while moving the substrate relative to the laser beam, thereby cutting the conductive film along lines spaced from each other at a predetermined distance. The machining quality and thus the electrical characteristics of the conductive film depend on the characteristics (mainly the peak power) of the Q-switched YAG laser used. The characteristics of the Q-switched laser in turn depend on the Q-switching frequency. If the Q-switching frequency is lowered, the pulse width becomes narrower, and the peak power becomes greater. Conversely, if the Q-switching frequency is raised, the pulse width becomes wider and the peak power becomes lower.
From the viewpoint of machining quality, it is desirable to use a lower Q-switching frequency to obtain a higher peak power of the laser beam. Then, it is possible to remove a limited portion in an instant via the ablation effect without giving thermal damage to the region near the removed portion and to the substrate on which the film is formed. Machining techniques based on the above method are disclosed in Japanese Laid-Open Patents Nos. 60-261142 and 2-259727. However, these machining techniques have disadvantage in productivity, because the lowering of the Q-switching frequency leads to the corresponding reduction in the moving speed of the stage, which in turn results in an extreme reduction in machining speed.
From the viewpoint of the machining speed, therefore, it is desirable to employ a higher Q-switching frequency to move the stage at a higher speed. However, if the Q-switching frequency is raised, the peak power becomes lower and the pulse width becomes wider. As a result, during the patterning of electrodes of a liquid crystal panel, thermal damage occurs in a glass substrate on which the electrodes are formed. The thermal damage generates microscopic cracks or depressions which may cause degradation in display quality of the liquid crystal panel. Glass contains a small amount of alkali metal. The alkali ions can dissolve into the liquid crystal via the cracks or depressions, which can cause defects in the display of the liquid crystal panel.
Thus, it becomes necessary to divide the beam into a plurality of rays of beam in order to increase the machining speed. Japanese laid-open patent Sho6l-89636, discloses a method using a cylindrical lens array. However, this method has several drawbacks as indicated below:
(1) This method is effective only if the incident beams have a uniform intensity distribution. If they are not uniform (e.g., Gaussian distribution), each of the divided beams has a different intensity and the groove width processed via these beams will be varied. For example, the application of this method to the patterning of electrodes of a liquid crystal panel causes local turbulence of the field distribution due to the varied groove width, and nonuniformity occurs in the orientation of liquid crystal. This nonuniformity causes a degradation in the display quality of the liquid crystal panel.
(2) Since the number of lenses has to be the same as the beam dividing number, the size and weight of the entire lens array grow as the beam dividing number increases, which makes it difficult to adjust and hold the arrangement of the lens array. In order to create a beam of approximately 10 &mgr;m wide required for micro-fabrication, the numerical aperture of the lens is required to be large. Assuming that the focal length of the lens is 100 mm and the wavelength of the laser is 400 mm, the lens should be 8 mm wide with no aberration.
(3) In the case of (2), focused beam lines approximately 10 &mgr;m in width should be arranged at 8 mm intervals if a plurality of 8 mm wide lenses are lined in the form of an array. After a plurality of grooves have been formed simultaneously at intervals of the lens width, the patterning can be completed by moving the stage at desired groove intervals (e.g., 130 &mgr;m) and then repeating the process. This method does not allow a plurality of grooves to be formed simultaneously in a region as small as the width of a lens.
(4) Since the intensity distribution on the focused beam lines achieved by a cylindrical lens array is in a slit shape, there is no problem with forming a groove in a straight line. However, it is effectively impossible to form a groove in a curved or slant line.
It is apparent that problems discussed in (1), (2) and (3) are inevitable when using a cylindrical lens array or circular lens array.
To solve the above problems, it is an object of the present invention to provide a laser machining apparatus and method which can provide high machining quality and high machining efficiency. It is another object of the present invention to provide a high quality liquid crystal panel produced by using the laser machining apparatus according to the machining method.
SUMMARY DISCLOSURE OF THE INVENTION
In accordance with the broad teachings of the present invention, laser beams from one or more pulse laser generators are divided into plural beams for simultaneously processing an object. The technique for dividing the laser beams is relatively simple and lends itself to high speed applications.
According to the preferred embodiment of the present invention, there is provided a method of laser machining, including the steps of: driving a plurality of pulse laser generators such that there is a delay in phase of the generating cycle between the plurality of pulse laser generators; making beams generated by the plurality of laser generators equal in quality to
Amako Jun
Murai Masami
Ota Tsutomu
Sonehara Tomio
Evans Geoffrey S.
Seiko Epson Corporation
LandOfFree
Laser machining apparatus with a rotatable phase grating does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Laser machining apparatus with a rotatable phase grating, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser machining apparatus with a rotatable phase grating will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2912077