Work holders – Work-underlying support – With tool couple element
Reexamination Certificate
1999-07-23
2003-07-08
Wilson, Lee D. (Department: 3723)
Work holders
Work-underlying support
With tool couple element
Reexamination Certificate
active
06588738
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a laser cutting system that has new designs at least with respect to its frame, its laser output mechanism, the process of outputting the laser for fabricating a worksheet, and the worktable system to which the worksheet is placed.
BACKGROUND OF THE INVENTION
Flying optic laser cutting systems are known. However, the prior art systems tend to have a number of shortcomings that limit their speed and efficiency. Some of these shortcomings result from, for example, the design of the frame that supports the cutting head of the laser cutting system, the design of the cutting mechanism itself, the way in which the cutting process is effectuated, the limited way in which a machine may be installed and, once installed, the limited accessing of the machine by the operator.
The laser cutting system of the instant invention aims to improve on every aspect of the aforenoted shortcomings of current laser cutting systems by, specifically, providing a new frame for the system, an improved laser cutting mechanism, and a more efficient process of effecting cutting. In addition, the laser cutting system of the instant invention is provisioned with a worktable system that enhances the cutting of a worksheet placed thereon, as well as for evacuating any dust and/or exhaust gases resulting from the fabricating of the worksheet efficiently away from the laser cutting system.
SUMMARY OF THE INVENTION
The present invention laser cutting system is built on a frame that has a cross beam supported by two structures. The cross beam is designed to have a trapezoidal structure for movably supporting a laser cutting head that hangs therefrom. The laser cutting head in turn is mounted to a base member that has arms extending in a direction perpendicular to the longitudinal axis of the cross beam. As a consequence, the cutting head can move along the longitudinal axis of the cross beam as well as the longitudinal direction along the axis of the arms extending from the base member. To effect the movement of the base member bidirectionally along the longitudinal axis of the cross beam, a linear drive mechanism, in the form for example of a magnet drive, may be used. A linear drive may also be used for moving the cutting head along the direction of the extending arms of the base members. For the movement of the cutting head along the vertical direction, a servomotor is mounted to the base member, or more specifically the skeleton frame of the base member to which the cutting head is mounted, so that the cutting head can be moved in a direction perpendicular to the respective longitudinal axes of the cross beam and the extending arms.
The cross beam of the frame of the laser cutting system is supported, at both ends, by respective support structures, which may be unitary structures. One the structures is configured to have a bore through which exhaust gases and/or dust particles resulting from the fabricating of a worksheet by the laser beam output from the cutting head may be vented away from the laser cutting system. The other of the support structures is configured to have an opening through which worksheets may be conveyed to or removed from a support table, such as for example a worktable or a cassette placed underneath the cross beam. The worksheets may also be conveyed to/from the laser cutting system from either side of the cross beam in a direction perpendicular to the longitudinal axis of the cross beam. To provide further rigidity for the frame of the laser cutting system, two truss members connect the support structures at their respective bases.
To control the movement of the laser cutting held a processor means, such as for example a computerized numerical controller (CNC), is provided in a housing positioned relative to the frame. The CNC, in addition to controlling the respective movements of the various drive motors that move the cutting head along the various directions, also controls the outputting of the laser beam to the cutting head by the laser generator, which is also positioned adjacent and/or relative to the frame.
For the laser cutting-system of the instant invention, the laser beam output from the laser beam generator, or resonator, is reflected by a number of mirrors with the focal point of the laser beam for fabricating the particular material of the worksheet to be focused by a motor mechanism internal to the cutting head. To maintain the distance related to the widening or focusing of the axial symmetric laser beam, the laser generator of the inventive laser cutting system has a telescope mechanism, positioned within the laser generator itself, that works cooperatively with the output coupler of the laser resonator for maintaining the density and the power of the laser beam to constant values for a predetermined distance, so that the power of the laser beam requisite for effectively fabricating the worksheet is maintained for every portion of the worksheet. The telescope mechanism has two mirrors. One is the output coupler from the laser resonator. The other is the lens that moves relative to the output coupler. The lens is driven relative to the coupler by a motor, which is controlled by software of the system according to some preset parameters. These parameters include, among other things, the distance separating the lens from the sheet material, i.e. the focusing lens distance.
Such auto-focusing of the laser beam is done automatically by a cognizance of a predetermined distance that the laser beam is to be output, the type of material being fabricated, and the type of telescopic mechanism to be used. Moreover, by taking into consideration the actual length of the laser beam and by dividing the maximum useable length of the laser beam into a number of zones, i.e., different quadrants or sectors, the focal point of the laser beam may be corrected. The focus of the laser beam for the different areas of the worksheet may be adjusted by moving the laser cutting head bidirectionally along its vertical axis to maintain respective optimal focal points for worksheets of different materials.
To compensate for the deficiencies inherent in the different areas of the worksheet which may be due to their respective locations with reference to the center of the worksheet, the worktable or cassette onto which the worksheet is placed has its areas divided into a number of portions each with correction factors determined empirically, so that such correction factors may be taken into account when a particular location of the worksheet which corresponds to the location on the worktable to which that portion of the worksheet superposes is to be fabricated by the laser beam output from the cutting head. These correction factors are stored in a memory that may be part of the CNC controller.
With respect to the way in which the laser beam output from the laser generator is to be directed, a number of reflective mirrors are used. To enhance the alignment process, unlike the prior art systems that require extensive removal and reassembly of the various mirrors for alignment of the laser beam, the reflective mirrors of the instant invention laser cutting system are configured such that alignment can easily be effected by the removal of a single one of the mirrors. Further, the reassembly of the mirror into the system does not require any further realignment of the laser beam. This is done by configuring the opening of the mirror holder to have a dimension large enough to allow the removal of the mirror while leaving the mirror holder fixed to the support of the device and allowing the laser beam to freely pass.
The laser cutting head being used with the laser cutting system of the instant invention, but for a number of modifications, could be any cutting head that is sold by a number of manufacturers. One of the improvements of the cutting head of the instant invention is the provision of a servomechanism, via feedback, for automatically adjusting the focus lens inside the cutting head so as to enable the automatic adjustment of the focus point for
Heyerick Frank
Remue Gilbert
Sukuvaara Jorma
Ulrich Johannes
Lillbacka Jetair Oy
Wilson Lee D.
Woo Louis
LandOfFree
Laser cutting system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Laser cutting system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser cutting system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3010082