Laser-assisted bending method

Metal deforming – With temperature modification of tool or of specified...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06415639

ABSTRACT:

The invention relates to a process for bending a component by means of mechanical force with the simultaneous selective heating of the component along the bending edge by means of a laser beam.
On bending in a V-die the metal sheet to be bent is firstly laid across a die of width w in a known manner, after which a bending punch is applied in the middle between the end points of the V acting as supports. The effect of the force produced by this stamp and the reaction forces produced thereby in the support points produce a bending moment in the metal sheet, by which the sheet bends, as a result of which the punch moves further in the direction of the vertex of the die. In the first phase of the bending process free bending is performed, which means that the bend line is determined only by the moment distribution in the metal sheet and neither the sides of the die nor the shape of the punch apart from the rounded edge in contact with the metal sheet have any influence. The influence of the die and the punch is only noticeable when the metal sheet due to the bending radius becomes detached from the original support points on the die and the latter move along the sides in the direction of the vertex. In this case gradually a positive contact is formed between the die and punch which produces the low springback characteristic of die bending or the precisely defined bend radius. This second phase of die bending is also called post-moulding or post-stamping. This phase is characterised by a significant increase in the force to be applied by the press.
The applicability of die bending is limited on the one hand by material properties such as fracture strain and yield stress and on the other hand by geometric conditions such as die width and the dimensions of the metal sheet. As the known theory of bending shows, the bending force required during free bending is proportional to the yield stress, the width of the metal sheet and the square of the thickness of the metal sheet so that with a maximum pressure force defined by the construction of the press there are limits with respect to the material properties and/or the die dimensions. In the stamping phase the force is only linearly dependent on the sheet thickness, whereby overall the force requirement is greater by a factor of 30 than during free bending.
A further limitation is the fracture strain, in that if the latter is exceeded tears appear on the bend edge. As the known theory of bending also shows, the critical load occurs in the outermost fibre of the bent component, whereby the strain produced there is dependent on the reciprocal value of the bending radius. A small bending radius—and this is mostly desirable in practice—requires a high value for the fracture strain.
It is a known fact about materials that yield stress generally falls with component temperature, whereas fracture strain increases. Exceptions are materials, such as steel which have a distinct blue shortness, for which the former statement only applies above a limit temperature (in the order of 200° C.) characteristic of the respective material.
The temperature behaviour of yield stress therefore makes it obvious to heat the material before or during the bending process in a known manner, so that the minimum possible bending radius or the required maximum force are reduced. The heating of the whole component is not practical however, as this requires a lot of energy, leads to distortion or oxidation and causes undesirable changes in the structure of the material. To avoid problems associated with heating the entire component, it is known to be possible to heat the component selectively by means of a laser beam, that is to supply energy only to the points at which the actual shaping process occurs in the component. In the case of die bending this is a linear region along the bending edge, whereby the outer zone, that is the region in which maximum tensile stress occurs in the metal sheet, reacts particularly favourably to heating, as tears are to be expected there first of all as a result of exceeding the tensile strength.
In U.S. Pat. No. 5,359,872 A and in DE 42 28 528 A1 according to these observations a metal sheet securely clamped on the one side and held on the other side by a robot is periodically traced over by a laser beam along the desired bend line at high speed, whereupon the robot applies a bending force and the bends the metal sheet along the preheated bend line. A disadvantage in this case however is that because of the pendulum movement of the laser beam the individual points on the bend line are only heated for a short time by the laser beam, producing a periodically fluctuating temperature field which in addition also shows phase displacement along the bend line. By means of a high frequency pendulum movement it can be ensured that these temperature fluctuations remain sufficiently small. In particular however due to the short acting high intensities localised overheating can occur, in extreme cases even to the stage of melting—or it can result in too high cooling speeds, which affects the metallurgical properties of the metal sheet unfavourably in the region of the bend line. This problem becomes more serious the greater the laser power to be applied, i.e. the thicker the metal sheets or the longer the bend lines. A further disadvantage is that due to the geometric properties the laser beam only acts on the side with pressure on the component, whereby it is known that the critical zone on bending is the one with maximum tensile stress, which can cause the formation of tears on falling below the minimum bend radius. To produce the above described pendulum movement in addition to the optical converter device described in DE 42 28 528 A1, reflectors mounted helically on a support roller are also suitable, as shown in EP 0 536 683 A1.
In order to completely avoid disadvantageous periodical temperature fluctuations occurring according to U.S Pat. No. 5,359,872 A and DE 42 28 528 A1, the heating must be provided along the bend line by a laser beam shaped into a burn line. In order to shape the laser beam in this way numerous solutions are known. The method described in AT 138 837 B uses a combination of cylindrical mirrors and lenses in order to produce a linear focus with which a continuous metal sheet is heat-treated along its width, in order to influence its magnetic properties favourably. Other possibilities are described e.g. in EP 0 549 357 A1 which can be used both for laser beams and for radiation from conventional lamps. The high energy losses occurring in several of the optical systems introduced in EP 0 549 357 A1 for guiding the beam are thus clearly easy to accept, as the radiation necessary to process fabrics and plastics is low. Because of the geometric design of a device for bending and the high radiation output required the said processes are not suitable for shaping a linear heating zone.
According to the present invention the problem of periodically fluctuating temperature distribution is avoided, in that the laser beam is supplied as a linear radiation field to each point on the bend line. By this measure at all times on each point of the bend line conditions are identical, so that the bending process is completely homogeneous over the length of a component. To produce the linear radiation field and supply the radiation field to the bend line according to the invention the devices for shaping the radiation and bringing it into the devices required for bending for introducing the mechanical force are integrated. Preferably, the present invention can be applied for the process of die bending, so that mechanical forces are transferred by bending punch and bending die onto the component. An additional advantage of the present process is the fact that the laser beam now contacts the side of the component with the maximum tensile stress.
The feeding of the laser beam onto the surface of the component opposite the bending punch is performed in an embodiment of the invention by a system of cylindrical lenses and/or cylindrical mirrors. In

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laser-assisted bending method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laser-assisted bending method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser-assisted bending method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2842308

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.