Laser amplifier

Optical: systems and elements – Optical amplifier – Dispersion compensation

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

H01S 300

Patent

active

059108576

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to laser amplifiers employing phase locked phase conjugation, and to a system for providing such phase locked phase conjugation.
2. Discussion of Prior Art
Beams of laser light may be amplified by passing a beam through an amplifying medium which is pumped with light energy, eg a flash lamp. The beam interacts with pump energy in the amplifying medium and an amplified output is obtained. It is known to reflect an amplified beam by a mirror so that the laser beam passes twice through the amplifier with consequential gain. There are several limits upon the amount of amplification that can be obtained. Increasing the cross section area and or length of the medium causes problems of cost and medium inhomogeneity. Another problem concerns heat build up in the medium.
To overcome the above, it is known to split a laser beam into several beams and pass each sub-beam through amplifiers. The amplified sub-beams are recombined. Unfortunately, phase coherence is lost in this arrangement.
Several attempts have been made to split, amplify, and recombine a laser. Some attempts have used phase locked phase conjugation techniques (phase locked phase conjugation has also been referred to as "beam combining" or "coherent coupling").
Phase locked phase conjugation is a variant of the technique of optical phase conjugation. In optical phase conjugation a "time reversed" replica of an optical beam is produced when the beam is incident upon a "phase conjugate mirror" (PCM). The time reversed, or phase conjugate, beam exactly retraces the path of the original beam.
One application of phase conjugation is for removing abberations in a double pass of a laser amplifier (D. A. Rockwell. "A review of phase-conjugate solid-state lasers", IEEE J. of Quantum Electron., 24, p1124 (1988)).
In another arrangement a laser beam was divided by a beam splitter mirror into two sub beams and each sub beam directed through an amplifier into a simulated Brillouin scattering (SBS) mirror. The SBS mirror reflects the two beams back through the amplifiers and onto the beam splitter mirror. Unfortunately the two amplified beams will have randomly different phases. As a result, when the amplified beams return to the beam splitter only part of the beams will go back along the direction of the original beam. Instead randomly different amounts will reflect off the beam splitter and pass through it. Use of independent PCMs will not give phase locking with amplification. Phase locking with phase conjugation has been reported by Basov (N. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I Mikhailov, and M. G. Smirnov, "Inversion of wavefront in SMBS of a depolarised pump", JETP Lett. 28, p197 (1978)). In these experiments a single depolarised beam was split into two beams, the two beams were directed on to an aberrator, which was imaged into an SBS cell containing a waveguide. The function of the abberator and the waveguide is to obtain a high degree of overlap between the two beams so that they are reflected from a common SBS grating within the SBS medium.
Basov et al also described phase locking with up to nine beams. This was achieved by using a waveguide to get overlap between the beams. An auxiliary reference beam was also used to improve phase locking. Problems associated with these schemes involving waveguides are less than perfected phase conjugate fidelity (near field speckle on the output beams is a particular problem), and low reflectivity (the maximum reflectivity achieved in Basov was 15%). Another limitation with using a waveguide is that the refractive index of the SBS medium must be greater than that of the waveguide material in order for waveguiding to take place. This places severe restrictions on the choice of SBS media. Another known system is described in D. A. Rockwell and C. R. Giuliano, "Coherent coupling of laser gain media using phase conjugation", Optics; Letters, 11, p147 (1986) Carroll et al, Journal of the Optical society of America B, Vol. 9, p

REFERENCES:
patent: 4757268 (1988-07-01), Abrams et al.
patent: 4794345 (1988-12-01), Linford et al.
patent: 5689363 (1997-11-01), Dane et al.
patent: 5717516 (1998-02-01), Klein et al.
IEEE Journal of Quantum Electronics, vol. 27, No. 1, Jan. 1991, New York US, pp. 135-141, XP0000002002222 N.F.Andreev et al.: "Locked phase conjugation for two-beam coupling of pulse repetition rate solid-state lasers" cited in the application see figure 5.
IEEE Journal of Quantum Electronics, vol. 24, No. 6, Jun. 1988, New York US, pp. 1124-1140, XP002002223 D.A. Riclwell: "A review of phase-conjugate solid-state laser" cited in the application see figures 9, 11.
Applied Optics, vol. 32, No. 30,Oct. 20, 1993, New York US, pp. 6183-6186, XP002002224 X.Hua et al.: Polarization-dependent phase locking in stimulated Brillouin scattering system: see abstract; figure 2.
FJournal of the Optical Society of America--B, vol. 11, No. 5, May 1994, New York US, pp. 786-788, XP002002225 N.F.Andreyev et al.: "Phase-conjugation fidelity fluctuation for various stimulated Brillouin-scattering mirror geometries" see figure 1.
Journal of the Optical Society of America--B, vol. 12, No. 10, Oct. 1995, New York US, pp. 1924-1932, XP002002226 K.D. Ridley: "Phase-locked phase conjugation by Brillouin-induced four-wave mixing" see figure 5.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laser amplifier does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laser amplifier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser amplifier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1686064

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.