Laser ablatable hydrophobic fluorine-containing graft...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S045000, C347S063000, C219S121700, C219S121710, C264S400000, C428S131000, C428S137000, C428S421000, C428S500000, C526S247000, C526S250000, C526S254000

Reexamination Certificate

active

06631977

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to laser ablatable hydrophobic fluorine-containing graft copolymers, and more in particular to articles such as ink jet printheads that are coated with a hydrophobic fluorine-containing graft copolymer that is laser ablatable. The invention also relates to methods of making fluorine-containing polymers laser ablatable within a desired wavelength range, and to a method of making a laser ablated article that includes the fluorine-containing article of this invention.
2. Description of Related Art
Laser ablated nozzle plates of ink jet nozzles are known to provide excellent drop ejector performance. One example of an ink jet nozzle in which the openings therein are formed with a laser can be seen in U.S. Pat. No. 5,291,226, incorporated herein by reference in its entirety. This patent describes an inkjet printhead that includes a nozzle member formed of a polymer material that has been laser-ablated to form inkjet orifices, ink channels, and vaporization chambers in the unitary nozzle member. The nozzle member is then mounted to a substrate containing heating elements associated with each orifice. In a preferred method, the orifices, ink channels, and vaporization chambers are formed using an excimer laser.
In ink jet printing, a printhead is provided, the printhead having at least one ink-filled channel for communication with an ink supply chamber at one end of the ink-filled channel. An opposite end of the ink-filled channel has a nozzle opening from which droplets of ink are ejected onto a recording medium. In accordance with the ink droplet ejection, the printhead forms an image on the recording medium. The ink droplets are formed as ink forms a meniscus at each nozzle opening prior to being ejected from the printhead. After a droplet is ejected, additional ink surges to the nozzle opening to reform the meniscus.
The direction of the ink jet determines the accuracy of placement of the droplet on the receptor medium, which, in turn, determines the quality of printing performed by the printer. Accordingly, precise jet directionality is an important property of a high quality printhead. Precise jet directionality ensures that ink droplets will be placed precisely where desired on the printed document. Poor jet directionality results in the generation of deformed characters and visually objectionable banding in half tone pictorial images. Particularly with the newer generation of thermal ink jet printers having higher resolution enabling printing at at least 360 dots per inch, improved print quality is demanded by customers.
A major source of ink jet misdirection is associated with improper wetting of the front face of the printhead containing at least one nozzle opening. One factor which adversely affects jet directional accuracy is the accumulation of dirt and debris, including paper fibers, on the front face of the printhead. Another factor which adversely affects jet directional accuracy is the interaction of ink previously accumulated on the front face of the printhead with the exiting droplets. This accumulation is a direct consequence of the forces of surface tension, the accumulation becoming progressively severe with aging due to chemical degradation (including, for example, oxidation, hydrolysis, reduction (of fluorine), etc.) of the front face of the printhead. Ink may accumulate on the printhead front face due to either overflow during the refill surge of ink or the splatter of small droplets resulting from the process of ejecting droplets from the printhead. When accumulated ink on the front face of the printhead makes contact with ink in the channel (and in particular with the ink meniscus at the nozzle orifice), the meniscus distorts, resulting in an imbalance of forces acting on the ejected droplet. This distortion leads to ink jet misdirection. This wetting phenomenon becomes more troublesome after extensive use of the printhead as the front face either chemically degrades or becomes covered with dried ink film. As a result, gradual deterioration of the generated image quality occurs.
One way of avoiding these problems is to control the wetting characteristics of the printhead front face so that no accumulation of ink occurs on the front face even after extensive printing. Thus, in order to provide accurate ink jet directionality, wetting of the front face of the printhead is preferably suppressed. This can be achieved by rendering the printhead front face hydrophobic.
For example, U.S. Pat. No. 5,218,381, incorporated herein by reference in its entirety, describes a coating comprising an epoxy adhesive resin such as EPON 1001F, for example, doped with a silicone rubber compound such as RTV 732. The coating can be provided in the form of a 24% solution of EPON 1001F and a 30:70 mixture of xylene and methyl iso-butyl ketone by weight doped with 1% by weight of RTV 732. Such a coating enables the directionality of an ink jet to be maintained for the printing lifetime of the printer. An adhesion promoter such as a silane component, for example, can also be included to provide a highly adherent, long lasting coating.
While laser ablated nozzle plates are able to provide excellent drop ejector performance as discussed above, a practical problem in so forming the nozzle plates is that while polymer materials used for the nozzle plate, for example polyimides, are laser ablatable with lasers such as excimer lasers, such polymers are not hydrophobic. It is thus necessary to provide a hydrophobic coating upon the surface of the nozzle plate to render the front face hydrophobic to improve the ink jet accuracy as discussed above.
It is difficult to apply a coating to a face of an ink jet nozzle plate after formation of the openings therein. While it is desirable to suppress the wetting property of the nozzle surface, it is also undesirable to allow any coating material to enter the channel of the nozzle. If the walls of the channel become coated with ink-repellent material, proper refill of the channel may be inhibited. Refill of each channel depends on surface tension and must be completed in time for the subsequent volley of droplets to be fired. If the refill process is not completed by the time the next droplet is fired, the meniscus may not be flush with the outer edge of the nozzle opening, resulting in misdirection. Further, an incompletely filled channel causes the ink droplet size to vary, which also leads to print quality degradation.
Providing the front face of nozzle plates with a hydrophobic coating prior to formation of the openings is also problematic when attempting to form the openings by laser ablation. Hydrophobic coating materials in general, and fluorine-containing polymers more specifically, are not laser ablatable, i.e., they are transparent to radiation at the wavelengths of 210-360 nm such as generated by excimer lasers and the third and fourth harmonics of NdYAG lasers.
U.S. Pat. No. 4,915,981 describes a method of ablating fluoropolymer composite materials wherein it was found that small holes (less than 100 &mgr;m) can be formed in fluoropolymer composite laminate materials using UV lasers of wavelengths between 190 nm and 400 nm. The resulting holes can be used to produce vias and plated through-holes having smooth side walls with little or no debris or residue remaining in the holes and minimal damage to the polymer. Thus, the vias and plated through-holes can be plated without further cleaning processes. The fluoropolymeric composite is at least one of the fluoropolymers selected from the group consisting of polytetrafluoroethylene (PTFE), a copolymer of TFE and perfluorovinyl ether (PFA), a copolymer of TFE and hexafluoropropylene (FEP) and a polychlorotrifluoroethylene (PCTFE) that contains a filler that absorbs within the specified UV range, for example a filler of at least one of microglass, silica, titanium dioxide, carbon fibers, microballoons and Kevlar.
U.S. Pat. No. 5,169,678 discloses that the ultraviolet absorption characteristics of a polymer material are modi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laser ablatable hydrophobic fluorine-containing graft... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laser ablatable hydrophobic fluorine-containing graft..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser ablatable hydrophobic fluorine-containing graft... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3141100

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.