Single-crystal – oriented-crystal – and epitaxy growth processes; – Forming from vapor or gaseous state – With a step of measuring – testing – or sensing
Reexamination Certificate
2011-07-12
2011-07-12
Kunemund, Robert M (Department: 1714)
Single-crystal, oriented-crystal, and epitaxy growth processes;
Forming from vapor or gaseous state
With a step of measuring, testing, or sensing
C117S104000, C117S105000
Reexamination Certificate
active
07976630
ABSTRACT:
A high-quality, large-area seed crystal for ammonothermal GaN growth and method for fabricating. The seed crystal comprises double-side GaN growth on a large-area substrate. The seed crystal is of relatively low defect density and has flat surfaces free of bowing. The seed crystal is useful for producing large-volume, high-quality bulk GaN crystals by ammonothermal growth methods for eventual wafering into large-area GaN substrates for device fabrication.
REFERENCES:
patent: 7078731 (2006-07-01), D'Evelyn et al.
patent: 7198671 (2007-04-01), Ueda
patent: 7211833 (2007-05-01), Slater, Jr. et al.
patent: 2007/0218703 (2007-09-01), Kaeding et al.
Amano et al., “Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AIN Buffer Layer,” 1986, Applied Physics Letter, vol. 48, No. 353, pp. 353-355.
Baker et al., “Characterization of Planar Semipolar Gallium Nitride Films on Spinel Substrates,” 2006, Japanese Journal of Applied Physics, No. 29, pp. L154-L157.
Baker et al., “Characterization of Planar Semipolar Gallium Nitride Films on Spinel Substrates,” 2005, Japanese Journal of Applied Physics, vol. 44, No. 29, pp. L920-L922.
Cantu et al., “Si Doping Effect on Strain Reduction in Compressively Strained Al0.49Ga0.51N Thin Films” 2003, Applied Physics Letter, vol. 83, No. 4, pp. 674-676.
Chakraborty et al., “Defect Reduction in a Nonpolar a-Plane GaN Films Using in situ SiNx Nanomask”, 2006, Applied Physics Letters, vol. 89, pp. 041903-1-041903-3.
Corrion et al., “Structural and Morphological Properties of GaN Buffer Layers Grown by Ammonia Molecular Beam Epitaxy on SiC Substrates for AlGaN/GaN High Electron Mobility Transistors,” 2008, Journal of Applied Physics, vol. 103, pp. 093529-1-093529-7.
Davidsson et al., “Effect of AlN Nucleation Layer on the Structural Properties of Bulk GaN Grown on Sapphire by Molecular-beam Epitaxy,” 2005, Journal of Applied Physics, vol. 98, pp. 016109-1-016109-3.
D'Evelyn et al., “Bulk GaN Crystal Growth by the High-Pressure Ammonothermal Method,” 2007, Journal of Crystal Growth, vol. 300, pp. 11-16.
Grandjean et al., “Nitridation of Sapphire. Effect on the Optical Properties of GaN Epitaxial Overlayers,” 1996, Applied Physics Letters, vol. 69, No. 18, pp. 2071-2073.
Green et al., “Polarity Control During Molecular Beam Epitaxy Growth of Mg-doped GaN,” 2003, Journal of Vacuum Science Technology, vol. B-21, No. 4, pp. 1804-1811.
Hellman et al., “The Polarity of GaN: a Critical Review,” 1998, MRS Internet Journal Nitride Semiconductor Research, vol. 3, No. 11, pp. 1-11.
Heying et al., “Control of GaN Surface Morphologies Using Plasma-Assisted Molecular Beam Epitaxy,” 2000, Journal of Applied Physics, vol. 88, No. 4, pp. 1855-1860.
Katona et al., “Observation of Crystallographic Wing Tilt in Cantilever Epitaxy of GaN on Silicon Carbide and Silicon (111) Substrates”, 2001, Applied Physics Letters, vol. 79, No. 18, pp. 2907-2909.
Keller et al., “Influence of the Substrate Misorientation on the Properties of N-polar GaN Films Grown by Metal Organic Chemical Vapor Deposition,” 2007, Journal of Applied Physics, vol. 102, pp. 083546-1-083546-6.
Keller et al., “Influence of Sapphire Nitridation on Properties of Gallum Nitride Grown by Metalorganic Chemical Vapor Deposition,” 1996, Applied Physics Letters, vol. 68, No. 11, pp. 1525-1527.
Koblmuller et al., High Electron Mobility GaN Grown Under N-rich Conditions by Plasma-assisted Molecular Beam Epitaxy, 2007, Applied Physics Letters, vol. 91, pp. 221905-1-221905-3.
Koblmuller et al., “In Situ Investigation of Growth Modes During Plasma-assisted Molecular Beam Epitaxy of (0001) GaN,” 2007, Applied Physics Letters, vol. 91, pp. 161904-1-161904-3.
Manfra et al., “Dislocation and Morphology Control During Molecular-Beam Epitaxy of AlGaN/GaN Heterostructures Directly on Sapphire Substrates,” 2002, Applied Physics Letters, vol. 81, pp. 1456-1458.
Marchand et al., “Microscructure of GaN Laterally Overgrown by Metalorganic Chemical Vapor Deposition”, 1998, Applied Physics Letters, vol. 73, No. 6, pp. 747-749.
Nakamura, et al., “GaN Growth Using GaN Buffer Layer,” 1991, Japanese Journal of Applied Physics, vol. 30, No. 10A, pp. L l705-L 1707.
Park et al., “Selective-area and Lateral Epitaxial Overgrowth of III-N Materials by Metal Organic Chemical Vapor Deposition,” 1998, Applied Physics Letters, vol. 73, No. 3, pp. 333-335.
Romanov et al., “Stress Relaxation in Mismatched Layers Due to Threading Dislocation Inclination” 2003, Applied Physics Letter, vol. 83, No. 13, pp. 2569-2571.
Stutzmann et al., “Playing with Polarity,” 2001, Physics Status Solidi, vol. B-228, No. 2, pp. 505-512.
Sumiya et al., “Review of Polarity Determination and Control of GaN,” 2004, MRS Internet Journal Nitride Semiconductor Research, vol. 9, No. 1, pp. 1-34.
Sumiya et al., “Growth Mode and Surface Morphology of a GaN Film Deposited Along the N-face Polar Direction on c-plane Sapphire Substrate,” 2000, Journal of Applied Physics, vol. 88, No. 2, pp. 1158-1165.
Waltereit et al., “Structural Properties of GaN Buffer Layers on 4H-SiC (OOO1) Grown by Plasma-Assisted Molecular Beam Epitaxy for High Electron Mobilty Transistors,” 2004, Japanese Journal of Applied Physics, vol. 43, No. 12-A, pp. L1520-L1523.
Weyher et al., “Morphological and Structural Characteristics of Homoepitaxial GaN Grown by Metalorganic Chemical Vapour Deposition (MOCVD),” 1999, Journal of Crystal Growth, vol. 204, pp. 419-428.
Xu et al., “Polarity Control of GaN Grown on Sapphire Substrate by RF-MBE,” 2002, Journal of Crystal Growth, vol. 237-239, Part 2, pp. 1003-1007.
International Search Report & Written Opinion of PCT Application No. PCT/US2009/056546, date of mailing Nov. 2, 2009, 13 pages total.
Kamber Derrick S.
Poblenz Christiane
Speck James S.
Kilpatrick Townsend & Stockton LLP
Kunemund Robert M
Soraa, Inc.
LandOfFree
Large-area seed for ammonothermal growth of bulk gallium... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Large-area seed for ammonothermal growth of bulk gallium..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Large-area seed for ammonothermal growth of bulk gallium... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2736232