Large-area seed for ammonothermal growth of bulk gallium...

Single-crystal – oriented-crystal – and epitaxy growth processes; – Forming from vapor or gaseous state – With a step of measuring – testing – or sensing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C117S104000, C117S105000

Reexamination Certificate

active

07976630

ABSTRACT:
A high-quality, large-area seed crystal for ammonothermal GaN growth and method for fabricating. The seed crystal comprises double-side GaN growth on a large-area substrate. The seed crystal is of relatively low defect density and has flat surfaces free of bowing. The seed crystal is useful for producing large-volume, high-quality bulk GaN crystals by ammonothermal growth methods for eventual wafering into large-area GaN substrates for device fabrication.

REFERENCES:
patent: 7078731 (2006-07-01), D'Evelyn et al.
patent: 7198671 (2007-04-01), Ueda
patent: 7211833 (2007-05-01), Slater, Jr. et al.
patent: 2007/0218703 (2007-09-01), Kaeding et al.
Amano et al., “Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AIN Buffer Layer,” 1986, Applied Physics Letter, vol. 48, No. 353, pp. 353-355.
Baker et al., “Characterization of Planar Semipolar Gallium Nitride Films on Spinel Substrates,” 2006, Japanese Journal of Applied Physics, No. 29, pp. L154-L157.
Baker et al., “Characterization of Planar Semipolar Gallium Nitride Films on Spinel Substrates,” 2005, Japanese Journal of Applied Physics, vol. 44, No. 29, pp. L920-L922.
Cantu et al., “Si Doping Effect on Strain Reduction in Compressively Strained Al0.49Ga0.51N Thin Films” 2003, Applied Physics Letter, vol. 83, No. 4, pp. 674-676.
Chakraborty et al., “Defect Reduction in a Nonpolar a-Plane GaN Films Using in situ SiNx Nanomask”, 2006, Applied Physics Letters, vol. 89, pp. 041903-1-041903-3.
Corrion et al., “Structural and Morphological Properties of GaN Buffer Layers Grown by Ammonia Molecular Beam Epitaxy on SiC Substrates for AlGaN/GaN High Electron Mobility Transistors,” 2008, Journal of Applied Physics, vol. 103, pp. 093529-1-093529-7.
Davidsson et al., “Effect of AlN Nucleation Layer on the Structural Properties of Bulk GaN Grown on Sapphire by Molecular-beam Epitaxy,” 2005, Journal of Applied Physics, vol. 98, pp. 016109-1-016109-3.
D'Evelyn et al., “Bulk GaN Crystal Growth by the High-Pressure Ammonothermal Method,” 2007, Journal of Crystal Growth, vol. 300, pp. 11-16.
Grandjean et al., “Nitridation of Sapphire. Effect on the Optical Properties of GaN Epitaxial Overlayers,” 1996, Applied Physics Letters, vol. 69, No. 18, pp. 2071-2073.
Green et al., “Polarity Control During Molecular Beam Epitaxy Growth of Mg-doped GaN,” 2003, Journal of Vacuum Science Technology, vol. B-21, No. 4, pp. 1804-1811.
Hellman et al., “The Polarity of GaN: a Critical Review,” 1998, MRS Internet Journal Nitride Semiconductor Research, vol. 3, No. 11, pp. 1-11.
Heying et al., “Control of GaN Surface Morphologies Using Plasma-Assisted Molecular Beam Epitaxy,” 2000, Journal of Applied Physics, vol. 88, No. 4, pp. 1855-1860.
Katona et al., “Observation of Crystallographic Wing Tilt in Cantilever Epitaxy of GaN on Silicon Carbide and Silicon (111) Substrates”, 2001, Applied Physics Letters, vol. 79, No. 18, pp. 2907-2909.
Keller et al., “Influence of the Substrate Misorientation on the Properties of N-polar GaN Films Grown by Metal Organic Chemical Vapor Deposition,” 2007, Journal of Applied Physics, vol. 102, pp. 083546-1-083546-6.
Keller et al., “Influence of Sapphire Nitridation on Properties of Gallum Nitride Grown by Metalorganic Chemical Vapor Deposition,” 1996, Applied Physics Letters, vol. 68, No. 11, pp. 1525-1527.
Koblmuller et al., High Electron Mobility GaN Grown Under N-rich Conditions by Plasma-assisted Molecular Beam Epitaxy, 2007, Applied Physics Letters, vol. 91, pp. 221905-1-221905-3.
Koblmuller et al., “In Situ Investigation of Growth Modes During Plasma-assisted Molecular Beam Epitaxy of (0001) GaN,” 2007, Applied Physics Letters, vol. 91, pp. 161904-1-161904-3.
Manfra et al., “Dislocation and Morphology Control During Molecular-Beam Epitaxy of AlGaN/GaN Heterostructures Directly on Sapphire Substrates,” 2002, Applied Physics Letters, vol. 81, pp. 1456-1458.
Marchand et al., “Microscructure of GaN Laterally Overgrown by Metalorganic Chemical Vapor Deposition”, 1998, Applied Physics Letters, vol. 73, No. 6, pp. 747-749.
Nakamura, et al., “GaN Growth Using GaN Buffer Layer,” 1991, Japanese Journal of Applied Physics, vol. 30, No. 10A, pp. L l705-L 1707.
Park et al., “Selective-area and Lateral Epitaxial Overgrowth of III-N Materials by Metal Organic Chemical Vapor Deposition,” 1998, Applied Physics Letters, vol. 73, No. 3, pp. 333-335.
Romanov et al., “Stress Relaxation in Mismatched Layers Due to Threading Dislocation Inclination” 2003, Applied Physics Letter, vol. 83, No. 13, pp. 2569-2571.
Stutzmann et al., “Playing with Polarity,” 2001, Physics Status Solidi, vol. B-228, No. 2, pp. 505-512.
Sumiya et al., “Review of Polarity Determination and Control of GaN,” 2004, MRS Internet Journal Nitride Semiconductor Research, vol. 9, No. 1, pp. 1-34.
Sumiya et al., “Growth Mode and Surface Morphology of a GaN Film Deposited Along the N-face Polar Direction on c-plane Sapphire Substrate,” 2000, Journal of Applied Physics, vol. 88, No. 2, pp. 1158-1165.
Waltereit et al., “Structural Properties of GaN Buffer Layers on 4H-SiC (OOO1) Grown by Plasma-Assisted Molecular Beam Epitaxy for High Electron Mobilty Transistors,” 2004, Japanese Journal of Applied Physics, vol. 43, No. 12-A, pp. L1520-L1523.
Weyher et al., “Morphological and Structural Characteristics of Homoepitaxial GaN Grown by Metalorganic Chemical Vapour Deposition (MOCVD),” 1999, Journal of Crystal Growth, vol. 204, pp. 419-428.
Xu et al., “Polarity Control of GaN Grown on Sapphire Substrate by RF-MBE,” 2002, Journal of Crystal Growth, vol. 237-239, Part 2, pp. 1003-1007.
International Search Report & Written Opinion of PCT Application No. PCT/US2009/056546, date of mailing Nov. 2, 2009, 13 pages total.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Large-area seed for ammonothermal growth of bulk gallium... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Large-area seed for ammonothermal growth of bulk gallium..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Large-area seed for ammonothermal growth of bulk gallium... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2736232

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.