Radiant energy – Invisible radiant energy responsive electric signalling – With or including a luminophor
Reexamination Certificate
2001-08-07
2004-10-05
Hannaher, Constantine (Department: 2878)
Radiant energy
Invisible radiant energy responsive electric signalling
With or including a luminophor
C250S370110
Reexamination Certificate
active
06800857
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a fiber plate (also called fiber optic plate), a radiation image pickup apparatus, a producing method therefor and a radiation image pickup system provided with the same, and more particularly to a fiber plate adapted for use in a radiation image pickup apparatus provided with conversion means for converting a radiation into light and a photoelectric converting element for converting light into an electrical signal and adapted to guide the light from the conversion means to the photoelectric converting element.
In the field of radiation image pickup apparatus, particularly of X-ray image pickup apparatus for medical purpose, there has been desired an X-ray image pickup apparatus of thin type, having a large image input area and capable of taking X-ray moving image with a high image quality. Also for the non-destructive testing apparatus for industrial use, there is required a thin and inexpensive X-ray image of a large area.
For such X-ray image pickup apparatus, there are proposed, for example, (1) an X-ray detecting apparatus having a fiber plate of which the fibers are inclined to prevent mutual interference of the non-light receiving areas of a CCD sensor thereby achieving a large area (as disclosed in the U.S. Pat. No. 5,563,414, and (2) an X-ray detecting apparatus having a fiber plate of which thickness is given a step difference to prevent mutual interference of the non-light receiving areas of a CCD sensor thereby achieving a large area (as disclosed in the U.S. Pat. No. 5,834,782).
FIG. 37
is a schematic cross-sectional view of an X-ray detecting apparatus of the above-mentioned configuration (1), composed of a phosphor
3
consisting for example of a scintillator for converting X-ray into visible light, individual fiber plates
2
A consisting of optical fibers or the like for guiding the visible light, obtained by the phosphor
3
, to an image pickup element
1
, and an image pickup element
1
A for converting the visible light, guided by the individual fiber plates
2
A, into an electrical signal.
In this X-ray image pickup apparatus, the individual fiber plate
2
A is inclined with respect to the image pickup element
1
A, and, between the individual fiber plates
2
A, there is provided a process circuit or the like for processing the electrical signal from each image pickup element
1
A.
FIG. 38
is a schematic perspective view of an X-ray detecting apparatus of the above-mentioned configuration (2), wherein components equivalent to those in
FIG. 37
are represented by corresponding numbers. As shown in
FIG. 38
, the length of the fiber plate
2
is partially changed and for example three image pickup elements are provided as a set with step differences therebetween, in order to provide each image pickup element with a process circuit.
However, in the above-described configuration (1), the light guide (entering/emerging) plane is inclined to the axis of the optical fiber, and the individual fiber plates are so arranged that the optical axes of the optical fibers mutually cross. It is difficult, with such configuration, to achieve compactization of the X-ray image pickup apparatus.
On the other hand, the above-described configuration (2) results in an increase in the dimension of the X-ray image pickup apparatus. Also as the alignment between each stepped portion and the image pickup element requires a high precision, the manufacturing process requires a large number of steps and also requires a highly precise aligning apparatus. In consideration of these facts, the configuration (2) is not practical.
Thus, the X-ray image pickup apparatuses of the conventional configurations have not been satisfactory in the increase in the size of the image pickup apparatus, in the cost reduction thereof and in the efficiency of the manufacturing process.
SUMMARY OF THE INVENTION
In consideration of the foregoing, an object of the present invention is to provide a large-area fiber plate suitable for compactization and cost reduction of the radiation image pickup apparatus and superior in the efficiency of the manufacturing process, and a radiation image pickup apparatus and a radiation image pickup system utilizing the same.
Another object of the present invention is to provide a method for producing a fiber plate and a radiation image pickup apparatus, capable of providing a large-area fiber plate, a radiation image pickup apparatus and a radiation image pickup system in inexpensive manner.
The present invention is featured in that, in a fiber plate in which plural individual fiber plates of a same thickness are so arranged in mutually adjacent manner as to provide a light guiding plane larger than that of an individual one fiber plate, each of the plural individual fiber plates is composed of a group of optical fibers having mutually parallel axes and the lateral faces of the plural individual fiber plates are so bonded that the axes of the optical fibers become mutually parallel.
In such invention, the axes of the optical fibers are preferably parallel or inclined to the normal line to the above-mentioned light guiding face. Also in such invention, at least either of the above-mentioned light guiding face or the above-mentioned lateral faces is preferably a polished surface.
Also in such invention, the above-mentioned lateral faces are preferably bonded by at least either of an adhesive or a metal.
Also in such invention, the portion of above-mentioned bonding is preferably a radiation intercepting bonded portion.
Also in such invention, the above-mentioned lateral faces preferably include a face crossing the normal line to the above-mentioned light guiding face.
The present invention is also featured in that, in a fiber plate in which plural individual fiber plates of a same thickness are so arranged in mutually adjacent manner as to provide a light guiding plane larger than that of an individual one fiber plate, each of the plural individual fiber plates is composed of a group of optical fibers having axes parallel to the normal line to the light guiding face, and the lateral faces of the plural individual fiber plates are so bonded that the axes of the optical fibers become mutually parallel, and the front face and the rear face constituting the light guiding faces of the fiber plate are same in area.
In such invention, the plural individual fiber plates are preferably bonded in the mutually parallel lateral faces thereof.
Also in such invention, the above-mentioned light guiding face is preferably a polished surface.
Also in such invention, the above-mentioned lateral face is preferably a polished face.
Also in such invention, the above-mentioned lateral faces are preferably bonded by at least either of an adhesive or a metal.
Also in such invention, the portion of above-mentioned bonding is preferably a radiation intercepting bonded portion.
Also in such invention, the above-mentioned lateral faces preferably include a face crossing the normal line to the above-mentioned light guiding face.
The present invention is further featured in that, in a radiation image pickup apparatus provided with a wavelength converting member for converting radiation into light, a photoelectric converting element for converting light into an electrical signal and a fiber plate positioned between the wavelength converting member and photoelectric converting element, the fiber plate are composed of plural individual fiber plates of a same thickness so arranged in mutually adjacent manner as to provide a light guiding plane larger than that of an individual one fiber plate, wherein each of the plural individual fiber plates is composed of a group of optical fibers having mutually parallel axes, and the lateral faces of the plural individual fiber plates are so bonded that the axes of the optical fibers become mutually parallel.
In such invention, the axes of the optical fibers are preferably parallel or inclined to the normal line to the above-mentioned light guiding face.
Also in such invention, at least
Hamamoto Osamu
Kajiwara Kenji
Canon Kabushiki Kaisha
Fitzpatrick ,Cella, Harper & Scinto
Hannaher Constantine
LandOfFree
Large-area fiber plate, radiation image pickup apparatus... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Large-area fiber plate, radiation image pickup apparatus..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Large-area fiber plate, radiation image pickup apparatus... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3267948