Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle diagnosis or maintenance indication
Reexamination Certificate
1999-11-05
2002-03-12
Cuchlinski, Jr., William A. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Vehicle diagnosis or maintenance indication
C340S438000, C340S988000, C340S572800, C340S870030, C379S056200, C701S024000, C701S029000, C701S030000, C345S156000
Reexamination Certificate
active
06356822
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to a communication system architecture (SA) for a vehicle which may be integrated into the vehicle's multiplexed electronic component communication system, and a process for communicating with the vehicle to provide information for and about the vehicle's operational status and coordinating the vehicle's activities. The system architecture includes an off board communication network. The communication system will include a multi-functional antenna system for the vehicle that will have the capability to receive AM/FM radio and video signals, and transmit and receive citizens band (CB) radio signals, short range radio frequency, satellite and microwave and cellular phone communications. The antenna may be installed as original equipment or as a back-fit part in the after-market. In either case the multi-functional antenna will be integrated with the vehicle's multiplexed electronic component communication system. The process for communicating with the vehicle will involve a communication service for which the vehicle's driver will enroll for and service will continue so long as maintenance fees are paid. The service will be capable of providing various levels of information transfer and coordination. The levels may include vehicle information such as (1) the need for servicing and location of the nearest service center with the necessary parts in stock, (2) routing, and (3) load brokering and coordination. The modular design of the system architecture (SA) will allow it to be employed with the vehicle platform which does not possess a full multiplexed electronic component communications system. The resulting vehicle, using an aftermarket application package, will be able to participate in some of the services.
PRIOR ART
Vehicle communication systems have been described before in the prior art. These systems in some cases related to vehicle maintenance and service. None of them took a direct feed of vehicle status from the vehicle internal communication system. Some of the prior art systems provided routing instructions. None of them used the concept of independent vehicles in a network as probes for information on driving condition status. None of the prior art coordinated vehicle load transfers of independent carriers to allow the independent day trip carriers to act in concert for long distance load transfers.
SUMMARY OF INVENTION
The invention is an intelligent information system architecture and process for commercial and other transportation vehicles that provides improved productivity, effectiveness, safety and other benefits. Moreover, the system architecture is tailored to the different businesses.
Commercial vehicles are tools for businesses. Like any tool, the commercial vehicle may be used in various applications depending on the businesses specific needs. All commercial vehicles require some kind of external information to enhance the use or performance of the vehicle. Of this information, some is generic to all businesses using commercial vehicles and some is specific to particular industries. The commercial vehicle platform required by this invention has an internal communication system with multiplexed electronic components using wireless as well as wired communications. Electronic components are communicated with and controlled through this network. Included among the electronic components is a multi-functional antenna system for the vehicle. The antenna(s) system will replace all current vehicle antennas such as CB, cellular, TV, and AM/FM/Weatherband radio, satellite, LORAN navigation, and other bands of the electromagnetic spectrum. The antenna(s) system may be installed as original factory equipment in the vehicle or as after market equipment. Also, included amongst the electronic equipment on the commercial vehicle platform are all the numerous speakers, microphones, and enunciators contained on the vehicle, and integrated into a modular integrated package.
The multiplexed system may gather the status of various operating parameters of the vehicle from the electronic components. The operating status of the vehicle may be uplinked through the multi-functional antenna system to one or more external communications control centers (ECCC). The ECCCs and the enrolled vehicle platforms generally comprise the communications system architecture (SA), although the SA is expected to include service and parts centers as well as weather, and routing and traffic tracking centers. There are three anticipated phases to implement the SA. They are:
1. Maintenance and Service
2. Routing and Trip Information
3. Business Specific Information/Coordination
All phases involve at a minimum two way communication between the ECCC and the enrolled vehicle platforms. The vehicle platforms may be any mobile vehicle. Only medium and heavy duty trucks and people transportation buses are described for illustration here. Additional components or functions which may be included into the platform system by the use of software modules and/or hardware components which once installed in an electronic cabinet will integrate the additional functions into the multiplexed system. This installation will make use of standardized modules and interface components.
Phase One (1) involves the maintenance and servicing of the vehicle platforms. The internal multiplexing system of the vehicle platforms will interconnect all of the electronic components of the vehicle. As such the status of vehicle systems may be uplinked to the ECCC without driver intervention. The status will include, but is not limited to key engine parameters provided from the engine electronic control module, transmission controller, anti-lock brake (ABS) status from the ABS controller, and trailer load and installation status, as well as truck cargo and conditions. The status information is only limited as far as to electronic component inputs which may be provided. The ECCC will analyze the vehicle operating status and downlink information and instructions to the vehicle. The downlinked information will include maintenance needs of the vehicle. Such maintenance needs might include the need for immediate service. In this case the downlinked information will include the location of the nearest vehicle service center which has the parts in stock to effect the repairs. It will also include routing instructions to get to the nearest service center. Routing instructions will be discussed further below in the description of Phase Two (2) Routing and Trip Information. The multiplexed vehicle electronic controllers will be able to sense erratic operation of the vehicle using monitors on steering, engine, and brake components as well as the trailer status. Should the uplinked status indicate an erratic driving pattern, the ECCC will contact the driver directly recommending a break and if necessary contact the vehicle's owner and in a last case notify highway or police authorities to provide warnings. The vehicle platform may also be configured to provide immediate feedback directly to the operator based on the business needs of the owner.
The Phase 1 information is viewed as generic type information valuable to owners of all mobile vehicles with particular interest to commercial vehicle owners.
The multiplexed vehicle may include infrared heat sensing apparatus, among apparatus using other frequency ranges and pressure sensing devices, to detect animals, vehicles and other heat emitting objects during poor visibility or nighttime driving. This will include the ability to sense the range to objects being approached. The electronic controllers will provide the driver warnings of the status directly through the integrated speakers and will uplink the information to the ECCC so the animal crossings may be provided to enrolled vehicle platforms in the vicinity. The ECCC will use the vehicle platforms with their sensory inputs as probes to establish a real time picture of a particular region; thereby, augmenting the information provided by any one service.
Phase 2 involv
Baughman Ronald L.
Dager Steven J.
Diaz R. Gary
Gemender John J.
Calfa Jeffrey P.
Cuchlinski Jr. William A.
International Truck and Engine Corp.
Powell Neil T.
Sullivan Dennis Kelly
LandOfFree
Land vehicle communications system and process for providing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Land vehicle communications system and process for providing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Land vehicle communications system and process for providing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2879438