Laminating system

Adhesive bonding and miscellaneous chemical manufacture – Surface bonding means and/or assembly means therefor – Automatic and/or material-triggered control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S355000, C156S364000, C156S379800, C156S510000, C156S552000, C271S008100, C271S110000, C248S639000, C108S153100

Reexamination Certificate

active

06536497

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates generally to equipment for laminating sheets of paper, documents, cookbooks, menus, safety notices, and the like, and more particularly to a laminating system with automatic capabilities for the volume laminating requirements of many users, including those of on-demand book publishers, in-plant printers, and service bureaus.
2. Description of Related Art
A typical automated laminating system includes three stand-alone components, a feeder, a laminator, and a trimmer, that the user positions next to each other and carefully aligns for cooperative operation. The feeder feeds a stream of individual sheets to an input of the laminator; the laminator receives the individual sheets, laminates them with a continuous length of laminating film, and then outputs a continuous length of laminated sheets; the trimmer trims the output into individual laminated sheets. This technology is well known and the components of a laminating system are commercially available from various sources, including the FINISHER 2700 laminating machine available from Banner American Products, Inc. of Temecula, Calif.
One problem with existing laminating systems relates to component alignment. To align the feeder, the laminator, and the trimmer for proper operation, the user positions the three stand-alone components relative to each to satisfy several criteria. First, the feeder, the laminator, and the trimmer must all be aligned with a common longitudinal axis along which the sheets will move (i.e., the feed path). Second, the feeder must be properly spaced from an input side of the laminator for proper feeding of sheets to the laminator. Third, the feeder must be square with respect to the laminator so that the leading edge of the sheets are perpendicular to the feed path. Fourth, the trimmer must be properly spaced from an output side of the of the laminator for proper feeding from the laminator to the trimmer. Fifth, the trimmer must be square with respect to the laminator so that trimming is parallel to the leading and trailing edges of the sheets.
One inadvertent bump or push of any one component during operation can significantly upset this alignment. Relocation of system components to another shop location and movement to a storage location when not in use also upsets this alignment. In each case, time, effort, and skill is required to realign the components for operation. Thus, users need some way to overcome this concern.
Another problem concerns the need to feed the sheets squarely to the laminator so that their leading edges are perpendicular to the feed path. The feeder typically includes a tray that holds a stack of sheets from which sheets are fed on-by-one to the laminator. The leading edges of the sheets are disposed toward the laminator, but seldom are all sheets in a stack of sheets perfectly square as desired to insure that all leading edges are perpendicular to the feed path. Usually some sheets in a stack of sheets are slightly out of alignment with the other sheets. Thus, there is a need to better align the sheets in the stack in order to facilitate feeding.
Yet another problem concerns spacing between the trailing edge of a sheet being fed to the laminator and the leading edge of the following sheet. It is often desirable to vary spacing according to the laminating job because the trimmer is usually set so that it trims up to the edges of each sheet for single-sided lamination while leaving a margin for double-sided lamination. In addition, it is important to be able to keep minimum spacing between sheets in order to avoid adhesive buildup on rollers in the laminator that occurs from the laminating film contacting the rollers at each space between the trailing edge of one sheet and the leading edge of the next sheet. Existing laminating systems are lacking in this respect, some using relative complicated sensor techniques, and so users need a better way to control spacing between sheets.
SUMMARY OF THE INVENTION
This invention addresses the concerns outlined above by providing a laminating system with an alignment retention structure. The laminating system includes a feeder, a laminator, and a trimmer mounted. It also includes a movable support structure adapted to support and hold the other components in alignment with each other.
Thus, an inadvertent bump or push is not of the usual concern. Relocation of system components to another shop location or storage location when not in use is a simpler task requiring less time, effort, and skill.
One embodiment includes much more. Simultaneous and differential speed control components for the feeder and the laminator enable a user to control spacing between individual sheets as they are received by the laminating apparatus. In addition, the feeder has a guide plate that helps position the leading edges of sheets perpendicular to the feed path.
To paraphrase some of the more precise claim language, a laminating system constructed according to the invention includes a feeder apparatus, a laminating apparatus, and a trimmer apparatus on a movable support structure. The feeder apparatus is adapted to hold a stack of sheets and to feed individual sheets from the stack of sheets to the laminating apparatus. The laminating apparatus is adapted to receive and laminate the individual sheets with a continuous length of laminating film to form a continuous length of laminated sheets. The trimmer apparatus is adapted to receive and trim the continuous length of laminated sheets to form individual laminated sheets.
The movable support structure is adapted to retain the feeder apparatus, the laminating apparatus, and the trimmer apparatus in alignment with each other for cooperative operation as a laminating system. It does so while enabling a user to move the support structure, the sheet feeder apparatus, the laminating apparatus, and the trimmer apparatus together without upsetting the alignment. Preferably, the movable support structure includes casters that rest on the shop floor or other horizontal surface, and the feeder apparatus is mounted on the movable support structure to enable movement of the feeder apparatus toward and away from the laminating apparatus to facilitate replacement of laminating film in the laminating apparatus.
According to another aspect of the invention, there is provided simultaneous and differential speed control. The feeder apparatus has a first motor adapted to power movement of the sheets to the laminating apparatus, and the laminating apparatus has a second motor adapted to power movement the sheets through the laminating apparatus. Simultaneous speed control means enables the user to vary the speed of the first motor and the speed of the second motor simultaneously by the operation of a simultaneous speed control operator input device. Differential speed control means enable the operator to control the difference between the speed of the first motor and the speed of the second motor in order by the operation of a differential speed control operator input device in order to thereby control the spacing between individual sheets as the sheets are received at the input of the laminating apparatus.
According to yet another aspect of the invention, there is provided means in the feeder apparatus for squaring the leading edges of individual sheets with a feed path leading to the laminating apparatus. The sheet feeder apparatus includes (i) a tray adapted to support a stack of sheets so that a leading edge of each sheet in the stack of sheets is disposed toward the laminating apparatus, (ii) a motor-driven rotating vacuum sheet feeder assembly adapted to lift individual sheets one at a time from a top of the stack of sheets and to feed the individual sheets one at a time to a feed path leading to the laminating apparatus, (iii) means for automatically raising the tray as individual sheets are fed to the feed path in order to raise the stack of sheets and thereby continuously supply sheets to the motor-driven rotating vacuum sheet feeder assembly, and (iv)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laminating system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laminating system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laminating system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3034614

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.