Fabric (woven – knitted – or nonwoven textile or cloth – etc.) – Coated or impregnated woven – knit – or nonwoven fabric which... – Coated or impregnated synthetic organic fiber fabric
Reexamination Certificate
2002-01-04
2004-08-03
Singh, Arti R. (Department: 1771)
Fabric (woven, knitted, or nonwoven textile or cloth, etc.)
Coated or impregnated woven, knit, or nonwoven fabric which...
Coated or impregnated synthetic organic fiber fabric
C106S287130, C106S287140, C106S287160, C139S38400B, C139S389000, C139S38700A, C139S410000, C280S728100, C280S729000, C280S733000, C280S748000, C428S034100, C428S035200, C428S035900, C428S036100, C428S036910, C428S101000, C428S166000, C442S076000, C442S149000, C442S168000, C442S169000, C442S182000, C442S203000, C442S286000
Reexamination Certificate
active
06770578
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to automotive protective devices such as inflatable air bags, side air curtains, or the like. More particularly, the invention relates to laminated woven and non-woven textile fabrics, including those with and without pre-configured air holding cavities, also referred to as one-piece woven (OPW), for use in side air curtains. The invention also provides a composite film product having adhesive and sealing properties useful in the manufacture of these related products and a method of manufacturing said composite film product.
2. Description of the Related Art
Currently available safety restraint devices for automotive vehicles include driver and passenger side air bags that are rapidly inflated by a gas—commonly referred to as “air”—which is produced by the ignition of a pyrotechnic material at the moment a collision begins. These devices provide a protective barrier between the vehicle occupants and the vehicle structure. Much of the impact of a collision is absorbed by the air bag, thus preventing or substantially lessening the possibility of serious bodily injury to the vehicle occupants. Air bags are typically stored in a collapsed, folded condition in the steering wheel to protect the driver, and in the dashboard to protect a front seat passenger. The automotive industry has recently introduced side air bags that are stored in the back of the front seats or in the rear seats to protect the cabin occupants in the event of a collision occurring on either side of the vehicle. More recently still, a further safety feature that has been made available for passenger vehicles, especially light trucks, sport utility vehicles (SUVs) and minivans, is the side-impact protective inflatable side air curtain that is designed to provide a cushioning effect in the event of side collisions or rollover accidents. These side air curtains are stored uninflated along the roof of the vehicle or in one of the main support pillars of the vehicle. In the event of a collision the side air curtain deploys along the interior side walls of the vehicle cabin, protecting the occupants from serious bodily injury from contact with the vehicle structure (support pillars, etc.) and from broken glass. They must also be designed to prevent the passengers from being thrown from the vehicle in rollover conditions, which is one of the principal dangers in an SUV accident.
Each of these various types of air bags has different design and physical property requirements, such as gas (air) holding ability or, alternatively, permeability, air pressure and volume, and puncture resistance. For example, the driver side and front passenger side air bags, which deploy in about 0.06 seconds, require very little or no gas retention ability since they are designed to inflate and then to deflate almost immediately after inflation. Passenger side air bags require a controlled permeability, which enables them to lose air more gradually, but still remain inflated for only a few seconds. Side air curtains, on the other hand, must retain air pressure and volume for relatively longer periods of time than other types of air bags to protect cabin occupants in rollover accidents, which can take up to 10 seconds or more to complete. Additionally, to be commercially acceptable, all vehicle air restraint devices must have superior packageability and anti-blocking properties, which permits them to be packed into a relatively small space, such as within a steering wheel or a vehicle support pillar, and to deploy instantaneously when needed without the material sticking to itself after being stored for relatively long periods of time, perhaps even years. These and other physical properties are determined in large part by the type of fabric and weave used in the air bag, whether the fabric is knitted, woven or non-woven, and, importantly, the nature of the coatings that are used on the fabric. Coatings of various types are used to seal the fabric of the air bag and make it air holding.
Wherever coated fabrics are used, considerations such as controlling air permeability, air pressure, and volume exist. Adhesion of the coating material to the textile fabric substrate also presents a serious problem that must be addressed. For example, it is generally more difficult to obtain strong adhesion of a coating material to textile fabrics having a smoother surface than it is with fabrics having a rougher surface. Radio frequency (RF) heat sealing techniques cannot be used with some coatings such as silicone rubber (polysiloxane) to form the air bag because this material will not flow at RF heat sealing temperatures. In such cases, air bags are usually made by stitching, a process that will frequently require the addition of an adhesive sealant in the stitched areas to prevent leakage of air. Even with such adhesive sealants, however, some leakage of air occurs at the stitching, which lessens the protective capability of the air bag.
The air holding capability of a side air curtain is critical since it must remain inflated for extended periods of time to protect passengers in automotive accidents involving multiple rollovers. Unlike driver side and passenger side air bags, which are designed to inflate instantaneously and to deflate almost immediately after inflation to avoid injury to the driver and front seat passenger, a side air curtain must be capable of remaining inflated for from about 3 to about 12 seconds, depending upon the size of the air curtain and the size and type of vehicle involved. An average passenger vehicle would require a side air curtain of from about 60 inches to about 120 inches in length measured along the side of the vehicle. A larger vehicle, such as a minivan, would require an even longer side air curtain. The inflation period of a side air curtain should be sufficient to protect the cabin occupants during at least three rollovers, the maximum usually experienced in such incidents.
Side air curtains are also designed to be configured to different sizes and shapes depending upon the type of vehicle in which they are to be deployed. Thus, the size and shape of the air curtain will vary depending upon the make and type of vehicle. For example, a minivan is likely to require a different configuration of side air curtain than an SUV. The distance and location of the vehicle's support pillars and the height of the vehicle must also be taken into consideration when designing an air curtain. Since side air curtains are relatively large in comparison with driver or passenger side air bags, the gas pressure available for their expansion, which is limited in volume by the amount of pyrotechnic material available, must also be effectively employed. This is accomplished by designing side air curtains that have air holding cavities only where they are needed to protect the passengers. Those areas where no protection is required have no air holding cavities, thus reducing the volume of gas required to inflate the device to the desired pressure. When side air curtains are deployed they may be subjected to extreme pressures within a relatively broad range depending upon their specific location or application. Air bag deployment pressures generally range from about 50 kilopascals (Kpa) to about 450 Kpa, which corresponds generally to a range of from about 7.4 pounds per square inch (psi) to about 66.2 psi. Accordingly, there is a need for fabric products and methods of construction for air bags that are versatile both in terms of accommodating the demand for varied sizes and shapes, and which will also be relatively light weight and relatively impermeable to fluids under such anticipated pressures.
Typically, an air bag is constructed by joining two or more woven textile fabrics, each of which has been pre-coated with a sealing material to maintain air pressure when the bag is inflated. The pre-coated fabric is configured to the desired shape as, for example, by cutting, and the separate pieces are then sewn or welded together. Frequently, they are both sewn a
Bradford Industries, Inc.
Hollander Law Firm, P.L.C.
Singh Arti R.
LandOfFree
Laminated textile fabrics for use in air holding vehicle... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Laminated textile fabrics for use in air holding vehicle..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laminated textile fabrics for use in air holding vehicle... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3325715