Laminated composite building component

Static structures (e.g. – buildings) – With synthetic resinous component – Foam

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S588100, C052S783170, C052S798100, C052S309500, C428S071000, C428S182000, C428S309900

Reexamination Certificate

active

06205728

ABSTRACT:

FIELD OF THE INVENTION
A laminated composite building component, capable of sustained axial stress as a primary support and enclosure of a building, wherein corrugated sheets with lateral edges configured to interlock with adjacent components are encapsulated and stiffened by a foam matrix.
BACKGROUND OF THE INVENTION
Historically, the effective strength of a column never approaches the ultimate strength of the material it's made of, because failure always precedes it due to inherent weaknesses in its shape. A column is a structural unit carrying loads which act parallel to the longitudinal axis of the member. If the applied load is eccentric to the axis, there is a lateral deflection and a resultant bending stress which combine with the direct compression and ultimately lead to failure of the member due to buckling. If the load could be applied exactly coincident with the longitudinal axis . . . if the member were perfectly straight . . . and if the material were homogeneous . . . then the column would be stressed in pure compression.
Heretofore, it's been impossible to produce this ideal member, and columnar design has had to factor in an equivalent eccentricity of load by using the empirically formulated Slenderness Ratio L/D . . . which is the laterally unsupported column length L divided by the minimum cross-section width, or diameter D. The tendency of the column to deflect laterally and develop bending stresses increases with L and decreases with D, so the taller the column . . . the weaker the section, and the shorter . . . the stronger. Hence, in the prior art the ultimate strength of a column has been governed more by its geometry . . . than what it's made of.
The present invention maximizes the strength of a pure column by negating its inherent weakness, the elongation, by reducing the laterally unsupported length and thus the Slenderness Ratio . . . to zero, by total encapsulation in and adhesion to plastic foam. This allows it as a homogeneous material to perform at ultimate strength, maximizing efficiency while minimizing material need. Here, although it carries no direct axial load, the plastic foam neutralizes the equivalent eccentricity of load, facilitates the pure compression of an ideal member, supercharges column ability, generates synergy . . . and supersedes history.
The intention here is to conquer the essence of this synergy . . . and domesticate it. With elongate structure adhered to and encapsulated by a core of plastic foam, the resultant composite is not only strong, resilient and moisture resistant but also ideal for building construction with a strength to weight ratio up to a thousand to one. With endless possibilities for longer spans, greater cantilevers, three-dimensional module building, and ultra-lite assembly systems, it's so novel that it puts a whole new dimension on architectural concepts and, with a myriad of applications, facilitates a new technology.
However, in building construction plastic foam has vices as well as virtues. As a foam structure it's hard to analyze and as a material it's chemically volatile. Thus it's totally dependent on and limited by empirical testing for every structural application, which is expensive and time-consuming, and drywall or its equivalent for every habitable use, items which are usually heavy, brittle and the antithesis of the foam's intrinsic nature.
The obvious technological potential here is prefabrication. But since the beginning of the industrial revolution, people have been trying unsuccessfully to minimize on-site labor costs with prefabricated panels. Over the years only two panels have proved viable and enduring, drywall and plywood, and neither of these are load-bearing . . . just facings. Other than that, today's house is still being built stick by stick just as it was long ago. The dilemma with structural panels is access and finish in that, after installation, internal access is ordinarily required for the placement of utility lines and overly finished panels tend to be inaccessible. If the pipes and wires are pre-installed per panel, splices between panels reduce line efficiency, increase labor, and defeat the purpose of prefabrication. Also, finished panels have abutting edges which are impossible to hide or relate to adjacent spaces. Hence, the ideal building panel would be a semi-finished load-bearing structure, with constant and convenient internal access, of an approved heat and fire resistant material, with cost-savings both in expedient manufacture and systematic on-site assembly.
SUMMARY OF INVENTION
Therefore, it is the principal object of the present invention to create a homogeneous heat and fire resistant laminated polymeric foam material that generates the characteristics of an ideal structural material in the facilitation of arbitrary shapes with identical physical behavior at all points. The rigid material, as the primary high performance structure capable of sustained stress, is either laminated to the surface of the composite as a stressed-skin membrane, or encapsulated within the body of the core as a corrugated sheet or skeleton structure that is bonded to and laterally braced by the resilient material. As a surface laminate, the membrane may also be fire resistant. As a corrugated sheet, it may also be thermoformed and integrated into the body of the composite in a continuous manufacturing process. And, as a skeleton, its structure may be a plurality of high strength elongate members arranged in parallel according to anticipated axial stresses. The resilient material may be an expanded polymeric foam, and the rigid material may be anything ordinarily associated with the high tensile and compressive properties of structural components in building construction. Rigid members may also be placed along the outer edges of the molded formations in order to maintain dimensional stability after cooling.
In the present invention with the exception of the stressed-skin sheets, the primary supporting structure is inside the body of the core with the laminate contact area maximized by total encapsulation. In known materials, the beneficial laminate effect of plastic foam on a relatively flimsy planar structure has demonstrated a great strength which the present invention intends to amplify. After encapsulation, the next priority is a versatile geometry that lends itself to both universal distribution and continuous spool feed into the cavity of the mold. Pursuant to this method, elongated circular and flat shapes such as wire and ribbon are favored, wire more versatile but ribbon stronger in one direction. As a structural prototype, consider a Styrofoam™ cylinder about the size of a wooden spool of thread. Next, push straight pins into the end of the cylinder. Depending upon the ultimate composite strength desired, one could put any number from one to one-hundred pins into the shape and, depending on the quantity selected, obtain a scientifically and mathematically predictable change in the structural performance of the Styrofoam™ cylinder. Finally, primecoat the pins with an adhesive which bonds them to the cellular structure of the Styrofoam™ for additional composite strength.
The delicate design theory here involves a most sophisticated balance between the structural steel shape, the molecular behavior of the particular polystyrene selected, and the structural characteristics of the heat activated adhesive. As a specific structural shape, the pin is circular, not unlike a wire, which automatically lends itself to the aspect of tension which is strictly lineal. Complete structural integrity, however, is also based on compression, hence, individual wires acting as independent columns. In columnar design, unsupported length leading to buckling of the member is the most critical tendency to failure, and it is based on the unsupported length of the column between lateral braces-which is usually floor slabs or structures. Hence, the shorter the column, the stronger its capability. Here, the capability of the pin as an elongated form wil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laminated composite building component does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laminated composite building component, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laminated composite building component will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2522101

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.