Laminate structural bulkhead

Static structures (e.g. – buildings) – Machine or implement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S749100, C052S787120, C052S742130, C052S745210, C052S309700, C052S309110, C029S897200, C029S530000, C293S155000, C296S182100, C296S205000, C296S190050, C296S030000, C428S036500, C428S071000

Reexamination Certificate

active

06237304

ABSTRACT:

BACKGROUND OF THE INVENTION
Particularly in automotive applications, box sections such as main frame rails are subjected to considerable stress forces where cross members are bolted to the rails. For example, when engine cradles are bolted to main frame rails they produce joints that are susceptible to durability cracking over time. In addition, the bolts which hold such components in place may loosen due to vibration at the joint. Moreover, conventional structures create a “noise path” which extends from the vehicle wheels and engine through the frame and into the passenger compartment.
As will be appreciated by those skilled in the art, in order to bolt a heavy component to the side of a rail section it is necessary to create a reinforced region or support structure at the site of attachment of the bolt. One approach which is used in the art is to provide a stamped bulkhead which supports a metal bushing. The bulkhead generally has three flange portions which are spot welded to the rail C-section. More specifically, the stamped bulkhead has a wall portion that extends from one wall of the rail section to the opposite wall or cap. Thus, the bulkhead forms a partition in the channel or cavity defined by the rail. In order to secure this wall portion in place, the bulkhead has three surfaces or flanges that are perpendicular to the bulkhead wall portion; that is, the bulkhead is in essence a shallow rectangular box that is open on one side. These three surfaces mate with the inner surfaces of the rail and are spot welded in place.
In order to utilize the bulkhead as a support for the cross structure which is attached thereto, it is designed to position a metal bushing that is spot welded to the bulkhead stamping. A bolt then passes through the bushing and secures the cross structure to the rail at the bulkhead-reinforced region. This conventional approach will be more fully illustrated hereinafter.
While the conventional bulkhead design does serve to reinforce the rail section at the attachment site of the cross member, it generally requires large gauge bushings and stampings and can actually increase unwanted vibration and noise. Moreover, the through-bolt, bushing, metal stamping and rail section essentially perform as discrete elements more than a unitary, integral reinforcement structure. This results not only in the above-mentioned increase in vibration and noise, but also fails to provide full reinforcement of the rail, resulting in metal fatigue at the joint and, in particular, at weld locations.
The present inventor has developed a number of approaches to the reinforcement of hollow metal parts such as: a reinforcing beam for a vehicle door which comprises an open channel-shaped metal member having a longitudinal cavity which is filled with a thermoset or thermoplastic resin-based material; a hollow torsion bar cut to length and charged with a resin-based material; a precast reinforcement insert for structural members which is formed of a plurality of pellets containing a thermoset resin with a blowing agent, the precast member being expanded and cured in place in the structural member; a composite door beam which has a resin-based core that occupies not more than one-third of the bore of a metal tube; a hollow laminate beam characterized by high stiffness-to-mass ratio and having an outer portion which is separated from an inner tube by a thin layer of structural foam; an I-beam reinforcement member which comprises a preformed structural insert having an external foam which is then inserted into a hollow structural member; and a metal w-shaped bracket which serves as a carrier for an expandable resin which is foamed in place in a hollow section.
None of these prior approaches, however, deal specifically with solving the problems associated with conventional reinforcing bulkheads in rail sections at cross member attachment sites. The present invention solves many of the problems inherent in the prior art.
It is an object of the present invention to provide a reinforced hollow metal structure which incorporates a bushing and a stamping in a bulkhead structure in a manner in which the components of the bulkhead work together as an integral unit with the reinforced structure.
It is a further object of the invention to provide a reinforced metal box section which provides greater strength to the section without significantly increasing vibration and noise transmission levels.
It is a further object of the present invention to provide a reinforced frame rail section at the attachment of a cross member such as an engine cradle in a manner in which stress forces are distributed over a region of the reinforced rail rather than at the discrete welds and in which noise and vibration are dampened.
These and other objects and advantages of the invention will be more fully appreciated in accordance with the detailed description of the preferred embodiments of the invention and the drawings.
SUMMARY OF THE INVENTION
In one aspect the present invention provides a reinforced structure. The reinforced structure includes a hollow structural member and a reinforcing member disposed therein. The reinforcing member has a pair of opposed walls. A layer of thermally expanded polymer is disposed between and is bonded to the opposed walls. This layer of polymer is also bonded directly to the structural member. A sleeve extends through the polymer parallel with and between the opposed walls. The polymer is bonded to the sleeve and the sleeve defines a passage through the polymer. The reinforced structure has holes that are in alignment with the ends of the sleeve. A bolt is then used to secure a component to the structural member. Thus, the hollow structural member is reinforced locally in the present invention at that position by virtue of the reinforcing member. The polymer is expanded in place by heating the entire structure after assembly, where it expands to fill gaps between the reinforcing structure and the structural member and bonds the reinforcing structure to the structural member.
In another aspect the reinforced structure of the present invention is a motor vehicle rail such as a front rail where local reinforcement for the attachment of components such as an engine cradle is required. In this aspect, the invention reduces vibration and noise transmission as well as increases the strength of the part at the site of the reinforcement.
In still another aspect the sleeve is a thin wall metal bushing, the opposed walls are metal stampings with flanges which are welded to the structural member and the polymer is a thermally expanded epoxy resin which contains hollow microspheres for density reduction.
In still another aspect the present invention provides method of reinforcing a structural member having a longitudinal channel. In this aspect a laminated structure having two opposed walls separated by a layer of thermally expandable polymer is placed in the channel of a rail section or the like. The laminated structure has a sleeve disposed in the layer of thermally expandable polymer. The sleeve defines a passage perpendicular to the opposed walls. The laminated structure also has a pair of end flanges. The laminated structure is placed in the longitudinal channel such that said sleeve passage is perpendicular to the longitudinal channel. The laminated structure is then welded to the structural member at the flanges. The entire structure is then heated to a temperature effective to activate the blowing agent of the polymer and thereby thermally expand the polymer such that it bonds the laminated structure to the structural member.


REFERENCES:
patent: 2060970 (1936-11-01), Belden
patent: 2327585 (1943-08-01), Ulrich
patent: 2883232 (1959-04-01), Olley et al.
patent: 3123170 (1964-03-01), Bryant
patent: 3493257 (1970-02-01), Fitzgerald et al.
patent: 3739882 (1973-06-01), Schwenk et al.
patent: 4079975 (1978-03-01), Matsuzaki et al.
patent: 4090734 (1978-05-01), Inami et al.
patent: 4238540 (1980-12-01), Yates et al.
patent: 4397490 (1983-08-01), Evans
patent: 4559274 (1985-12-01), Klop

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laminate structural bulkhead does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laminate structural bulkhead, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laminate structural bulkhead will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2483053

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.