Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for...

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Bacteria or actinomycetales

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S093450, C435S252900, C435S823000, C435S853000

Reexamination Certificate

active

06808703

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to microorganisms for preventing or treating obesity or diabetes mellitus, which are capable of reducing an amount of monosaccharides or disaccharides that can be absorbed into the intestine by converting those mono or disaccharides into polymeric materials that cannot be absorbed in the intestines. The present invention also relates to use of the microorganisms for preventing or treating obesity or diabetes mellitus and a pharmaceutical composition containing the microorganisms.
BACKGROUND OF THE INVENTION
Obesity is well known as a chronic disease caused by various factors whose origins have not yet been clearly discovered. It is understood that obesity induces hypertension, diabetes mellitus, coronary heart disease, gall bladder disease, osteoarthritis, sleep apnea, respiratory disorder, endomerial, prostate, breast and colon cancer and the like.
According to the NIH Report (THE EVIDENCE REPORT:
Clinical Guideline on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults,
1999, NIH), about 97,000,000 Americans suffer from overweighting and obesesity, and the number of patients of type II diabetes mellitus associated with obesity, reaches about 15,700,000. Moreover, it is reported that about 200,000 people die of diseases associated with obesity each year (Dan Ferber, Science, 283, pp 1424, 1999).
Diabetes mellitus is one of the most widespread chronic diseases in the world, which impose a substantial expense on the public as well as on patients of diabetes mellitus and their families.
There are several types of diabetes mellitus that are caused by various etiological factors and whose pathogenesis is different from each other. For example, genuine diabetes mellitus is characterized by high level of blood glucose and glycosuria, and is a chronic disorder of carbohydrate metabolism due to a disturbance of the normal insuline mechanism.
Non-Insulin-Dependent Genuine Diabetes Mellitus (NIDDM), or the type II diabetes mellitus is found in adults who have insulin-resistance in a peripheral target tissue, despite of normal generation and function of insulin. Non-Insulin-Dependent Genuine Diabetes Mellitus(NIDDM) can be caused by three important metabolic disorders, i.e., insulin-resistance, fucntional disorder of insulin secretion stimulated by nutrients, and overproduction of glucose in liver. Failure to treat NIDDM, resulting in losing control of blood glucose levels, leads to death of patients from diseases such as atherosclerosis, and/or may cause late complications of diabetes, such as retinopathy, nephropathy or neuropathy.
Accompanying diet-exercise therapy, NIDDM therapy uses sulfonylurea and biguanidine compounds to control blood glucose levels. Recently, therapeutic compounds such as metformin or acarbose have been used for treating NIDDM. However, diet-exercise therapy alone or even combined with chemotherapy using such compounds fails to control hyperglycemia in some of the diabetes mellitus patients. In such cases, these patients require exogenous insulin.
Administration of insulin is very expensive and painful to patients, and furthermore, may cause various detrimental results and various complications in patients. For example, incidences, such as, miscalculating insulin dosage, going without a meal or irregular exercise, may cause insulin response (hypoglycemia) and sometimes the insulin response occurs even without any particular reasons. Insulin injection may also cause an allergy or immunological resistance to insulin.
There are several methods for preventing or treating obesity or diabetes mellitus, including diet-exercise therapy, surgical operation and chemotherapy. Diet-exercise therapy involves a low-calorie and low-fat diet accompanying aerobic exercise, but this therapy requiring a regular performance is hard to continue until achieving the goal.
Despite of instant effects, a surgery for physically removing body fat has limitations due to the risk and cost involved in a surgical operation and insufficient durability of the effects.
As one of the most promising therapies currently developed, pharmacotherapy can reduce blood glucose level, inhibit absorption of glucose, strengthen the action of insulin or induce the decrease of appetite. The medicines that have been developed so far use various physiological mechanisms for the prevention and the treatment of obesity and diabetes mellitus.
Some medicines, such as, sulfonylurea, metformin, pioglitazone or thiazolidindione derivatives and the like have been developed to enhance the function of insulin. Although sulfonylurea stimulates insulin-secretion from &bgr;-cells in the pancreas, it may accompany side effects, such as hypoglycemia resulting from lowering blood glucose levels under normal levels.
Metformin is mainly used for insulin-nondependent diabetes mellitus patients who fail to recover after diet-exercise therapy. This medicine inhibits hepatic gluconeogenesis and enhances glucose disposal in muscle and adipose tissue. However, it suffers from side effects, such as, nausea, vomiting and diarrhea.
Pioglitazone developed by Takeda in Japan, enhances the function of insulin through increasing susceptibility of cells to insulin (Kobayashi M. et al., Diabetes, 41(4), pp 476-483, 1992).
Beta 3-adreno receptor inhibitor (BRL-35135) known as a medicine that stimulates the decomposition of body fats and that convert body fats into heat with a specific action on adipose cells, also suffers from lowerings blood glucose level.
The inhibitor of a pancreatic lipase (Orlistat produced by Roche of Switzlend) inhibits and/or reduces absorption of body fats by inhibiting pancreatic lipase. It, however, accompanies undersirable inhibition of absorption of fat-soluble vitamin and may also cause breast cancer.
Generally, medicines that decrease appetite affects catecholamine in the brain. However, dexfenfluororamine and fenfluoroamine have side effects of nerve toxicity and valvular heart disease. Also, sibutramine has side effects of increasing heart rate and blood pressure.
&agr;-Glucosidase inhibitor (Acarbose produced by Bayer of Germany), is known as a glucose absorbing inhibitor. Acarbose is pseudo-monosaccharide which competitively inhibits the action of various a-glucosidases existing in microvilli of the gastrointestinal tract. However, taking a large amount of these may induce diarrhea. (W. Puls et al., Front. Horm. Res. 2, 235, 1998).
Amylase inhibitor that inhibit converting carbohydrates into oligosaccharides has been developed to prevent imbalance of metabolism originated from excessive uptake of nutrient. (Sanches-Monge R. et al. Eur. J. Biochem., 183, 0037-40, 1989).
Dietary fiber using diet with a large amount of vegetable fiber is the easiest way to obtain inhibitory effect on obesity by lowering glucose and/or fat amounts absorbed in the intestine. However, such method also involves problems in requiring facility and manpower for the production of dietary fiber with low productivity.
Polymeric materials, such as, isomaltotriose, dextran and pullulan, inhibit the increase of blood glucose level originated from glucose. However, such materials also cause severe side effects. For example, dextran may induce excessive bleeding by delaying a blood coagulation time.
Among said various medicines, dietary fibers are the most useful medicine for prevention or treatment of obesity because no damage to the human metabolism-balance and use natural substances.
Microorganism dietary fiber is produced using microorganisms, such as,
Gluconobacter
sp.,
Agrobacterium
sp.,
Acetobacter xylinum, A. hansenil, A. pasteurianus, A. aceti, Rhizobium
sp.,
Alcaligenes
sp.,
Sarcina
sp.,
Streptococcus thermophilus, Lactococcus cremoris, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus sake, Lactobacillus reuteri, Lactobacillus lactis, Lactobacillus delbrueckii
subsp.,
Lactobacillus helveticusglucose
var.
jugurti, Leuconostoc dextranicum, Bulgariscus
sp.,
Campestris
sp.,
Sphingomonas
sp.
Dietary fiber produced by t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3286654

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.