Labeled bunch graphs for image analysis

Image analysis – Pattern recognition – Template matching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S118000, C382S190000, C382S195000, C382S199000, C382S278000, C382S282000, C382S285000, C382S305000, C707S793000

Reexamination Certificate

active

06356659

ABSTRACT:

FIELD OF THE INVENTION
The present Invention relates to technology for recognizing and analyzing objects that are shown in camera or video images. In particular, the present invention relates to technology which compensates for variability of images for different objects of the same type, or for images of the same object (due to differences in position, scale, orientation, pose, illumination, deformation, noise etc.).
BACKGROUND OF THE INVENTION
Techniques exist for analyzing captured images in order to perform image matching or other functions, such as the extraction of a fixed, sparse image representation from each image in an image gallery and for each new image to be recognized. Conventional techniques, however, require a great deal of computational power and time. When comparing a new image with all images stored in a gallery of thousands of images, each comparison requires a new, computationally-expensive matching process. There is a need for an image analysis technique that is more easily implemented.
SUMMARY OF THE INVENTION
It is therefore an objective of the present invention to provide a technique for image analysis that is more easily implemented than are conventional techniques, and which requires less computational power and time.
The present invention provides a process for image analysis. The process includes selecting a number M of images, forming a model graph from each of the number of images, such that each model has a number N of nodes, assembling the model graphs into a gallery, and mapping the gallery of model graphs into an associated bunch graph by using average distance vectors &Dgr;
ij
for the model graphs as edge vectors in the associated bunch graph, such that
Δ
ij
=
1
M




m

Δ
ij
m
.
where &Dgr;
ij
is a distance vector between nodes i and j in model graph m. A number M of jets is associated with each node of the associated bunch graph, and at least one jet is labeled with an attribute characteristic of one of the number of images. An elastic graph matching procedure is performed, wherein the graph similarity function is replaced by a bunch-similarity function S(G, G
I
) such that
S

(
G
,
G
I
)
=
1
N




n

max
m



S

(
J
n
m
,
J
n
l
)
.
The model bunch graph may be manually prepared by associating a standard grid of points over an image, correcting node positions to fall over designated sites characteristic of the image, and extracting jets at the nodes. Object recognition may be performed by selecting a target image, extracting an image graph from the target image, comparing the target image graph to the gallery of model graphs to obtain a graph similarity S(G
M
, G
I
) such that
S

(
G
M
,
G
I
)
=
1
N




n

S

(
J
n
M
,
J
n
I
)
-
λ
E


e

(
Δ



x
_
e
M
-
Δ



x
_
e
I
)
2
;


and
identifying a model graph having a greatest graph similarity with the image graph.


REFERENCES:
patent: 4725824 (1988-02-01), Yoshioka
patent: 4805224 (1989-02-01), Koezuka et al.
patent: 4827413 (1989-05-01), Baldwin et al.
patent: 5168529 (1992-12-01), Peregrim et al.
patent: 5187574 (1993-02-01), Kosemura et al.
patent: 5220441 (1993-06-01), Gerstenberger
patent: 5333165 (1994-07-01), Sun
patent: 5383013 (1995-01-01), Cox
patent: 5430809 (1995-07-01), Tomitaka
patent: 5432712 (1995-07-01), Chan
patent: 5511153 (1996-04-01), Azarbayejani et al.
patent: 5533177 (1996-07-01), Wirtz et al.
patent: 5588033 (1996-12-01), Yeung
patent: 5625717 (1997-04-01), Hashimoto et al.
patent: 5680487 (1997-10-01), Markandey
patent: 5699449 (1997-12-01), Javidi
patent: 5714997 (1998-02-01), Anderson
patent: 5715325 (1998-02-01), Bang et al.
patent: 5719954 (1998-02-01), Onda
patent: 5736982 (1998-04-01), Suzuki et al.
patent: 5764803 (1998-06-01), Jacquin et al.
patent: 5774591 (1998-06-01), Black et al.
patent: 5809171 (1998-09-01), Neff et al.
patent: 5828769 (1998-10-01), Burns
patent: 44 06 020 (1995-06-01), None
Buhmann, et al “distortion invariant object recognition by matching hierarchically labeled graphs”, pp. 155-159, Jun. 1989.*
Manjunath “a feature based approach to face recognition”, IEEE, pp. 373-378, Mar. 1992.*
Wong, et al “pc-based human face recognition system”, IEEE, pp. 641-644, 1992.*
Hall “computer image processing and recognition”, academic press, pp. 467-484, 1979.*
Beymer, D.J.: “Face Recognition Under Varying Pose”, MIT AI, Lab Memo #1461, Dec. 1993.
Beymer, D.J.: “Face Recognition Under Varying Pose”, Proc. IEEE Computer Vision and Pattern Recognition, pp. 756-761, Seattle, WA, Jun. 1994.
Kruger, N: “An Algorithm for the Learning Weights in Discrimination Functions Using a Priori Constraints”, Mustererkennung, G. Sagerer et al., Ed. Spring Verlag, Sep. 13, 1995.
Maurer, T., von der Malsburg, C: “Single-View Based Recognition of Faces Rotated in Depth”, in Proceedings of the International Workshop on Automatic Face-and Gesture-Recognition, pp. 248-253. Zurich, CH, Jun. 26, 1995.
Maurer, T., von der Malsburg, C.: “Learning Feature Transformations to Recognize Faces Rotated in Depth”, in Proceedings of the International Conference on Artificial Neural Networks, vol. 1, pp. 353-358, Paris, France, Oct. 9-13, 1995.
Wiskott, L., Fellous, J.M., Kruger, N., and von der Malsburg, C.: “Face Recognition and Gender Determination”, Proc. of the Int. Workshop on Automatic Face-and Gesture-Recognition, Ed. Martin, Bischel, pp. 92-97, Zurich CH, Jun. 26, 1995.
Wiskott, L., Fellous, J.M., Kruger, N., and von der Malsburg, C.: “Face Recognition by Elastic Bunch Graph Matching”, Internal report, IR-INI 96-08, Institut fur Neuroinformatik, Ruhr-Universitat, Bochum, 44780 Bochum, Germany, 21 Pages, Apr. 1996.
Wiskott, L.: “Labeled Graphs and Dynamic Link Matching for Face Recognition and Scene Analysis”, Verlag Harri Deutsch. Thun-Frankfurt am Main. Reihe Physik 53 (PhD thesis), 110 pages. Dec., 1995.
Wiskott, L.: “Phantom Faces for Face Analysis”. Internal Report, IR-INI 96-06, Institut fur Neuroinformatik, Ruhr-Universitat, Bochum, 44780 Bochum, Germany, 12 Pages, Mar. 1996.
Wiskott, L. (1996): “Phantom Faces for Face Analysis”. Proc. of the 3rd Joint Symposium on Neural Computation, Pasadena, CA. 6:46-52, Publ. Univ. of California, San Diego. Jun. 1, 1996.
Akimoto, T., et al, “Automatic Creation of 3-D Facial Models”,IEEE Computer Graphics&Applications.,pp. 16-22, Sep. 1993.
Ayache, N., et al, “Rectification of Images for Binocular and Trinocular Stereovision”, InIEEE Proceedings of 9th International Conference on Pattern Recognition,pp. 11-16, 1988, Italy.
Belhumeur, P., “A Bayesian Approach to Binocular Stereopsis”,International Journal of Computer Vision,19(3), 1996, pp. 237-260.
DeCarlo, D., et al, “The Integration of Optical Flow and Deformable Models with Applications to Human Face Shape and Motion Estimation”, pp. 1-15, InProceedings, CVPR ′96,pp. 231-238.
Devernay, F., et al, “Computing Differential Properties of 3-D Shapes from Stereoscopic Images without 3-D Models”,INRIA,RR-2304, 1994, pp. 1-28.
Dhond, U., et al, “Structure from Stereo-A Review”,IEEE Transactions on Systems, Man, and Cybernetics,vol. 19, No. 6, pp. 1489-1510, Nov./Dec. 1989.
Fleet, D. J., et al, “Computation of Component Image Velocity from Local Phase Information”,International Journal of Computer Vision,vol. 5, No. 1, 1990, pp. 77-104.
Fleet, D.J., et al, “Measurement of Image Velocity”,Kluwer International Series in Engineering and Computer Science,Kluwer Academic Publishers, Boston, 1992, No. 169, pp. 1-203.
Hong, H., et al, “Online Facial Recognition Based on Personalized Gallery”,Proceedings of International Conference on Automatic Face and Gesture Recognition,pp. 1-6, Japan, Apr. 1997.
Kolocsai, P., et al, Statistical Analysis of Gabor-Filter Representation,Proceedings of International Conference on Automatic Face and Gesture Recognition, 1997,4 pp.
Kruger, N., “Visual Learning with a prior Constraints”,Shaker Verlag,Aachen, Germany, 1998, pp. 1-131.
Kruger, N., et al, “Principles of Cortical

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Labeled bunch graphs for image analysis does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Labeled bunch graphs for image analysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Labeled bunch graphs for image analysis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2854313

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.