Label-making inkjet printer

Typewriting machines – Sheet or web – For feeding web record-medium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C400S208000, C400S605000, C400S613000, C347S101000, C156S234000

Reexamination Certificate

active

06648533

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to printing devices, and particularly to label-making printers.
A label includes print imaging and an adhesive surface. The print imaging typically represents some text or graphic content identifying, characterizing, quantifying, or otherwise referencing some article. Labels on consumer items contain bar codes for inventory control, price information, or, generally, to identify characteristics of the goods or the source of such goods. Labels on food items, for example, contain images, such as text or graphics, that describe or portray the product. Currently, labels find limited application in other more creative and personal applications. For example, labels may be decorative as applied to gifts or packaging. Conventional label making methods and label-media fall short, however, of the potential for labels as a convenient, i.e., easily produced and used, device presenting selected print imaging for display on a contact surface.
The bulk of conventional home, small office, and personal printing involves application of text and images on sheet-form media. Most typically, the sheet-form media is paper, e.g., 8½ by 11 inch sheets. Other media sizes include envelope sizes, card stock sizes, and other conventional paper sizes, e.g., A-4 paper size. Accordingly, conventional printers include paper transport and print head arrangements particularly adapted for such media sizes. Most printers allow media size variation by multiple source trays, by modification in paper tray compartments and by front-fed arrangements. A user thereby applies print imaging to such variety of paper sizes from small card stock to large sheet-form media.
Unfortunately, most printers have a lower limit on the size of media carried by the paper transport mechanism and print head operation in relation thereto. For many applications, e.g., from printing postcards to envelopes to sheet-form media, this lower boundary in media size represents no problem.
Print imaging on a label typically appears on the upper-most surface of the label. Since the image is exposed, it is vulnerable to moisture and scuffing, which degrade the quality of the image. In some commercial applications, the image is protected by applying a clear film over the image. When a printed label is applied to the item, a border is created because the label is thick and does not blend into the background of the item. This commonly happens, for example, when a white label is applied to a colored background. While aesthetic concerns are not an issue in all applications, aesthetics are important when the user wants the labeled item to look professional or when labels are used in more creative and artistic applications. In some applications, images are printed onto transparent labels so that the label blends into the background of the item. However, the print is located on the upper surface of the label and is, therefore, still exposed to moisture and scuffing. For home uses, the image may be laminated to protect it from moisture and scuffing. However, this approach is disadvantageous since lamination increases the overall thickness of the image, adds additional steps to the process, and requires a laminating device.
Label-making printing operations present challenge, therefore, with respect to conventional printer operation. Individual labels, in many cases, are smaller than the typical lower size limit manageable by most printers. In other words, printers are typically not adapted to handle especially small media sizes and, therefore, are not well suited for printing on individual labels. Several approaches to label-making have evolved to overcome this challenge.
First, because conventional printers are most suitably adapted for sheet-form media, e.g., 8½ by 11 inch sheets, labels often come as an array of labels grouped together on an 8½ by 11 inch sheet. Typically, such label sheets include a waxy back sheet to which the labels adhere. As such, most printers accept and transport past a printing zone a sheet of labels and apply appropriate text and graphics thereto. Unfortunately, the user must pass through the printer an entire sheet of labels even when only a single label is required. In other words, the user sends through the printer the entire label sheet for the sake of printing a single label. While in some applications it is possible to make use of all labels on the sheet, this presents certain inconvenience and inefficiency when a user wishes to produce fewer than an entire sheet of labels. Once a user sends a label sheet through a printer and removes one or more labels, it is generally unadvisable to send the label sheet back through the printer with one or more labels removed from the back sheet. Although some special label sheets have been proposed allowing multiple passes through a printer, such use presents risk of contamination within the printer paper transport and printing system when exposed to the waxy back sheet.
Second, printers have evolved as dedicated label-making printers. These label-making printers are small printers having the capability of printing individual labels. Unfortunately, such dedicated label-making printers, while capable of printing single labels at a time, are limited in the size of labels produced. In other words, the labels are of fixed or bordered size and printing applications must adapt to this limited size when producing labels. Furthermore, such printers are generally incapable of producing graphics or color image presentation. Accordingly, dedicated label-making printers do provide advantage in their ability to produce single labels but suffer from limited output capabilities in terms of size and image presentation.
In any case, label making presents certain challenge or additional effort, especially when the labels are relatively small. It would be desirable, therefore, to more conveniently produce labels, i.e., media bearing print imaging and an adhesive surface.
Other known label making methods involve using inkjet receptor compositions suitable for coating onto plastics to make the plastics inkjet receptive. For example, applications for overhead transparencies are known in the art. These are composed of transparent plastic materials such as polyester, which alone will not accept the aqueous inks and are therefore coated with receptor layers. Typically these receptor layers are composed of mixtures of water soluble polymers which can absorb the aqueous mixture from which the inkjet ink comprises, such as hydrophilic layers having poly (vinyl pyrrolidone) or poly (vinyl alcohol), as described in U.S. Pat. Nos. 4,379,804; 4,903,041; and 4,904,519. Also known are methods of cross-linking hydrophilic polymers in the receptor layers as disclosed in U.S. Pat. Nos. 4,649,064; 5,141,797; 5,023,129; 5,208,092; and 5,212,008. Other coating compositions contain water-absorbing particulates such as inorganic oxides, as disclosed in U.S. Pat. Nos. 5,084,338; 5,023,129; and 5,002,825, or those containing particulates, such as cornstarch, as disclosed in U.S. Pat. Nos. 4,935,307 and 5,302,437.
Many of these types of inkjet receptor media, however, are less than ideal for image graphics because they include water-sensitive polymer layers. Even if subsequently overlaminated, they still contain a water-soluble or water-swellable layer, which, in time, can be subject to extraction with water and can lead to damage of the graphic and liftoff of the overlaminate. Additionally, some of the common constituents of these hydrophilic coatings contain water-soluble polymers not ideally suitable to the heat and UV exposures experienced in exterior environments, thus limiting their exterior durability. Finally, the drying rate after printing of these materials appears slow since until dry, the coating is plasticized or even partially dissolved by the ink solvents (mainly water) so that the image can be easily damaged and can be tacky before it is dry.
In the commercial setting, labels are printed by a number of processes known in the art,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Label-making inkjet printer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Label-making inkjet printer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Label-making inkjet printer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3160647

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.