Knock-down separation of emulsions

Liquid purification or separation – With heater or heat exchanger – Vapor or gas removal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C096S182000, C210S143000, C210S257100, C210S512100, C175S206000

Reexamination Certificate

active

06214219

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Filed of the Invention
This invention relates to methods and apparatus for separating emulsions; in particular, this invention relates to methods and apparatus for separating water-in-oil emulsions; and most particularly, this invention relates to methods and apparatus for separating water-in-oil invert drilling fluids.
2. State of the Art
In drilling operations, for example, drilling operations to recover petroleum, drilling fluids pumped down a drill string remove rock cuttings produced by the drill bit from the borehole to the surface. The drilling fluid also helps to control subsurface pressures and provides a protective and stabilizing coating to permeable formations.
Drilling fluid is pumped through a hollow drill string and the drill bit into the borehole while the well is being drilled, thereby cooling and lubricating the drill bit and the drill string. The fluid is then forced up the borehole and through the annulus between the drill string and the wall of the borehole to the surface. At the surface, the rock cuttings are filtered from the drilling fluid through a shaker screen and the screened fluid is re-circulated to the borehole through the drill string and drill bit.
The driller constantly monitors and adjusts the consistency and properties of the drilling fluid during the operation, for example, to compensate for pressure changes within the well as the drill bit penetrates the various rock strata.
Specific drilling fluid systems are selected to optimize a drilling operation in accordance with the characteristics of a particular geological formation. Those skilled in the art refer to drilling fluids comprising liquid, usually water or oil, and solids in suspension as a drilling mud. Oil-based drilling muds usually contain oil as the continuous phase, although frequently a separate water phase is emulsified in and dispersed throughout the oil phase so that there is no distinct or separate layer of water in the mud. Such water-in-oil drilling muds or fluids will herein be referred to as water-in-oil invert drilling fluids. Water-in-oil invert drilling fluids are normally used to drill through swelling or sloughing shales, salt, gypsum, anhydrite or other evaporite formations, hydrogen sulfide-containing formations and to drill holes through hot (>300 degree F.) formations.
Water-in-oil invert drilling fluids are far superior to the water-based systems for sectors of off-shore drilling and for penetration of water-sensitive layers. They are preparations of the type of water-in-oil emulsions, that is the aqueous phase has broken up into small particles which are heterogeneously distributed in a finely dispersed state within a continuous oil phase. The drilling fluid will contain a solid component, usually a suitable clay. For stabilizing the system altogether and for establishing the desired performance properties, a multiplicity of additives is provided, more specifically emulsifiers or emulsifier systems, weighting agents, fluid-loss additives, alkali reserves, viscosity modifiers and the like.
All water-in-oil invert drilling fluids are designed to function with a range of water contents. This is a necessary feature, since water can enter the mud as a contaminate at any time as one drills though the geologic formations. Normally, the mud will be maintained with a lower water content and a higher mud weight.
Conventionally, the oil phase of such a mud is No. 2 diesel oil, but other oils can be used in special situations, such as a non-polluting mineral oil in environmentally-safe drilling fluids. The water phase may range from freshwater (defined herein to be any water containing less than 1% total dissolved solids) to near saturated calcium chloride water. However, it is never desirable to allow the water to become saturated or super-saturated with calcium chloride. In this condition, a hydrate of the salt will come out of solution as the mud cools and carry water that will weaken the emulsion and cause water wetting of the mud solids. From 35 to 38 percent calcium chloride in the water in an upper limit for safe operation.
Many water-in-oil invert drilling fluids use a calcium or magnesium fatty-acid soap as the primary emulsifier. Such a soap adequately emulsifies the mud at temperatures up to about 275 degree to 300 degree F. for freshwater or sodium chloride water. At higher temperatures and for calcium chloride water, special supplemental emulsifiers, generally polyamides, are needed. The soap also adds viscosity to the oil and provides a weak gel structure which helps in barite suspension.
The emulsion adds viscosity and enhances fluid loss control to the mud compared to non-emulsified muds. The emulsified water droplets affect fluid viscosity in the same manner as inert solids. As mud density is increased, it is necessary to decrease the maximum allowable water content in order to minimize the plastic viscosity. At mud weights above 18 lb/gal. the water content should be less than 12 percent. The water also decreases fluid loss in the same manner as oil emulsified in a water-base mud.
All of the solids in an oil-mud must be wet by the oil to prevent agglomeration that causes high viscosities and settling of the particulates. Since barite and drilled solids are naturally water-wet, an oil-wetting agent is necessary in oil-mud. The soaps 15 do some of the oil wetting. However, they are not strong enough nor do they act fast enough to handle a large influx of water-wet solids. Rapid additions of barite, fast drilling in soft shales, and water-mud contamination are all cases where a special oil-wetting surfactant is needed.
Although the soap and water contents provide viscosity to an oil-mud, additional viscosity is often needed for suspension, especially in the lower mud weight range.
Either asphalts or amine treated bentonite are normally used for this purpose. Asphalt either softens or goes into solution in the oil to cause thickening of the oil. It may also react with other mud components to cause development of a grease-like structure. The amine treated bentonite is dispersible in oil and acts as a colloid to cause increased viscosity.
Despite the advantages of water-in-oil invert drilling fluids they have one tremendous disadvantage—once they have been used of a drilling operation, they contain the additives for that particular hole and are not useful for recycling, so the driller has a large quantity of muddy emulsified oil that is are difficult to dispose of. Drilling a borehole produces drill cuttings, comprised of pulverized rock and invert mud residues, which are a muddy water-in-oil emulsion, as a waste material. As the use of water-in-oil invert drilling fluids has increased in the last several years due to drilling deeper holes, there has been a substantial effort towards a reduction of the environmental impact of oil-contaminated drill cuttings. After the well has been drilled there is a large quantity of a muddy water-in-oil emulsion containing any number of additives and enhancers, as well as all the drill cuttings, that is, the fragments of rock formed by the drill bit, and removed by to conveying upwardly along with the drilling fluid. In practice, these amounts of rock cuttings produced are separated by one or more steps of sieving and additional separating steps such as centrifugation from the major amount of the recycled drilling fluid phase. But the cuttings still have a significant amount of oil on them. All of these waste products should be disposed of in an environmentally friendly manner.
One technique suggested for the treatment and disposal of invert oil waste has been the use of land-farming. Land-farming is a natural waste management process with a minimal energy input requirement. A land-farming site is prepared by stripping and stockpiling topsoil and a layer of humus from the site. The drill cuttings are spread over the area and covered with the stockpiled topsoil and humus. The oil-contaminated drill cuttings and soil are then cultivated and mixed, thereby increasing the contact of drill cutt

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Knock-down separation of emulsions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Knock-down separation of emulsions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Knock-down separation of emulsions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2453203

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.