Knit article having ravel-resistant edge portion and...

Textiles: knitting – Fabrics or articles – Articles

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C066S174000, C066S202000, C002S162000, C002S167000

Reexamination Certificate

active

06367290

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to the field of making knit articles, and, more particularly to preventing the raveling of an edge portion of a knit article such as a knit glove.
(2) Description of the Prior Art
Knitting processes have been used to make a variety of products and garments for quite some time. This textile fabrication technique creates comfortable items that are pliable, have high extensibility and that are relatively inexpensive. Generally, knitting provides productivity and lead time advantages compared to weaving processes. Knitting machinery is better adapted to producing small lots of goods and provides a shorter lead time and quicker response to such orders. In many respects knitting processes are faster than wovens and offer the benefits of providing body sizes and full-fashioned garments. Other knitting advantages include the low initial capitol costs, the lack of a need for expensive yarn preparation, the small area of floor space required for the equipment and the need for fewer auxiliary machines during operation. Knitting processes have been carried out in the textile art in a wide range of natural and synthetic fibers and yarns.
Despite all these advantages, a knit garment or article, and in particular a knit glove, suffers from a drawback. Knit products are susceptible to raveling. Raveling is defined technically as the process of undoing or separating the knit of a fabric. The term also refers to the process of removing yarns consecutively from a fabric and, further, to a loose yarn that has been partially or wholly detached from a cloth. As a practical matter, it is known that a loose end extending from a knit product may be pulled and, under the right circumstances, an entire knit item may be pulled apart simply by pulling on the loose end.
For glove makers, this problem has been particularly troublesome. One approach for dealing with the problem involves an extra sewing step. After knitting, the edge portions of knit glove cuffs are sewn manually on serging machines to apply an overlock stitch designed to hold any loose ends of material in place. This overcast sewing typically is accomplished with a polyester, nylon or cotton yarn. It will be readily appreciated that the additional serging step is labor intensive and can add significantly to the manufacturing cost of the glove.
Another approach for addressing this problem involves the use of the fusible adhesive yarn of the type disclosed in U.S. Pat. No. 5,572,860 to Mitsumoto, et al., assigned to Nitto Boseki Company, Ltd. and Shima Seiki Company, Ltd. In the Mitsumoto yarn a spun core yarn and a heat fusible yarn are twisted with each other in the same or opposite twisting directions as that of the spun core yarn. The spun core yarn is composed of an elastic yarn and a non-elastic short fiber assembly extending in the direction of the elastic yarn. The non-elastic short fiber assembly encloses the circumference of the elastic yarn as a core. The non-elastic short fiber assembly is expanded and bent by the contraction of the elastic yarn. The fusible adhesive yarn attached to the short fibers is solidified into small blocks located in a form of dots such that the expanded short fibers cover the small blocks of solidified fusible adhesive yarn.
In commercial applications it is believed that this yarn typically has been produced using the combination of spandex and polyester and a low melt yarn. This combination produced favorable results with respect to eliminating the additional labor associated with the sewn-in yarn described above. Nevertheless, this yarn has a unique set of drawbacks. First, the need for three components in the yarn makes it a relatively high cost solution. The tension in the elastic component of the spun core yarn must be carefully controlled so as to produce just the right amount of expansion and opening of the short fiber assembly. The spandex component is provided with a silicone finish, which, even in minute quantities, can contaminate particular types of work areas. For example, controlled environment chambers used for automobile painting are particularly sensitive to silicone contamination arising from the spandex finish. Lastly, experience with fusible adhesive yarns of this type has shown that, after repeated washings, the internal bond created by the fusible yarn breaks down.
Another type of commercially available heat fusible yarn is comprised of an elastic core strand, one or more wrap strands of a non-elastic material such as textured polyester and a cover strand comprised of a heat fusible yarn. The heat fusible yarn is placed on the outside of the composite yarn structure so as to be in intimate contact with and more readily bond to adjacent yarn strands. A typical heat fusible yarn of this type is available from Supreme Corporation as style number 343. This yarn provides acceptable results but does require a two-step manufacturing process given the separate wrapping steps needed.
It follows that there is a need for a knit article incorporating a heat fusible composite yarn so as to address the raveling problems of knit products. The article and yarn should use readily available, low-cost components and manufacturing techniques and should be capable of being heat treated using existing equipment to prevent raveling of the edge portion of the article.
SUMMARY OF THE INVENTION
The present invention addresses the raveling problems in the edge portions of knit articles, particularly knit gloves, by providing a knit article incorporating a novel heat fusible yarn in the courses making up the edge portion of the article. A knit article made according to the present invention may have its edge portion or portions heat treated using existing equipment but at a lower overall cost. This is because the novel heat fusible yarn incorporated into the knit article is constructed of multiple air-interlaced strands. Unexpectedly, it has been found that even though the air interlacing process joins the multiple strands into a single combined strand that may be knit, the fairly open structure of the combined strand exposes a portion of the low melt yarn component and thus makes it available for bonding to adjacent yarns.
The heat fusible yarn provides numerous advantages that include, but are not limited to, the need for less material per unit length than prior art heat fusible yarns which include a low melt strand wrapped around the exterior of the yarn structure. The heat fusible yarn of the present invention may be created in a single manufacturing step using readily available, well-known components and manufacturing equipment. The yarn may be produced with a shorter lead time and with fewer manufacturing steps that prior art yarns. Although these advantages are discussed with respect to knit gloves herein, this yarn may be used with any knit article having an edge portion susceptible to raveling and capable of being heat set.
The present invention thus relates to a knit article having an edge portion subject to raveling including a plurality of knitting courses in the edge portion. Each of the edge portion knitting courses is knitted with at least one strand of a heatfusible yarn comprised of at least one strand made up of a low melt fiber and at least one additional strand. The low melt fiber and the additional strand are combined by air interlacing to create a single combined strand so as to expose a sufficient amount of the low melt fiber strand to facilitate a bond to an adjacent yarn strand in the knit structure.
In a preferred embodiment the low melt fiber is comprised of a material selected from the group consisting of polyethylene, polyethylene copolymers and polypropylene.
In a particularly preferred embodiment, the knit article is a glove and the heat fusible yarn is knitted in a cuff portion of the glove.
It is an object of the present invention to reduce the number of manufacturing steps required to create a raveling-resistant edge portion on a knit article such as a glove.
Another object of the present inve

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Knit article having ravel-resistant edge portion and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Knit article having ravel-resistant edge portion and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Knit article having ravel-resistant edge portion and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2865298

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.