Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Reexamination Certificate
1999-12-13
2002-04-09
McGarry, Sean (Department: 1635)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
C435S287200, C435S091100, C435S335000, C436S526000, C436S527000, C536S025420
Reexamination Certificate
active
06368800
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods for separating or isolating a biological target material from other substances in a medium to produce an isolated material of sufficient purity for further processing or analysis. The present invention particularly relates to methods for separating or isolating biological target materials using magnetically responsive particles capable reversibly binding the material. The present invention more specifically relates to methods for separating or isolating biological target materials using at least one magnetically responsive particle comprising silica or a silica derivative such as silica gel which reversibly binds the biological target material thereof.
BACKGROUND OF THE INVENTION
Many molecular biological techniques such as reverse transcription, cloning, restriction analysis, and sequencing involve the processing or analysis of biological materials. These techniques generally require that such materials be substantially free of contaminants capable of interfering with such processing or analysis procedures. Such contaminants generally include substances that block or inhibit chemical reactions, (e.g. nucleic acid or protein hybridizations, enzymatically catalyzed reactions, and other types of reactions, used in molecular biological techniques), substances that catalyze the degradation or depolymerization of a nucleic acid or other biological material of interest, or substances that provide “background” indicative of the presence in a sample of a quantity of a biological target material of interest when the nucleic acid is not, in fact present in the sample. Contaminants also include macromolecular substances from the in vivo or in vitro medium from which a nucleic acid material of interest is isolated, macromolecular substances such as enzymes, other types of proteins, polysaccharides, or polynucleotides, as well as lower molecular weight substances, such as lipids, low molecular weight enzyme inhibitors or oligonucleotides. Contaminants can also be introduced into a target biological material from chemicals or other materials used to isolate the material from other substances. Common contaminants of this last type include trace metals, dyes, and organic solvents.
Obtaining DNA or RNA sufficiently free of contaminants for molecular biological applications is complicated by the complex systems in which the DNA or RNA is typically found. These systems, e.g., cells from tissues, cells from body fluids such as blood, lymph, milk, urine, feces, semen, or the like, cells in culture, agarose or polyacrylamide gels, or solutions in which target nucleic acid amplification has been carried out, typically include significant quantities of contaminants from which the DNA or RNA of interest must be isolated before being used in a molecular biological procedure.
Conventional protocols for obtaining DNA or RNA from cells are described in the literature. See, e.g. Chapter 2 (DNA) and Chapter 4 (RNA) of F. Ausubel et al., eds.,
Current Protocols in Molecular Biology
, Wiley-Interscience, New York (1993). Conventional DNA isolation protocols generally entail suspending the cells in a solution and using enzymes and/or chemicals, gently to lyse the cells, thereby releasing the DNA contained within the cells into the resulting lysate solution. For isolation of RNA, the conventional lysis and solubilization procedures include measures for inhibition of ribonucleases and contaminants to be separated from the RNA including DNA.
Many conventional protocols in use today also generally entail use of phenol or an organic solvent mixture containing phenol and chloroform to extract additional cellular material such as proteins and lipids from a conventional lysate solution produced as described above. The phenol/chloroform extraction step is generally followed by precipitation of the nucleic acid material remaining in the extracted aqueous phase by adding ethanol to that aqueous phase. The precipitate is typically removed from the solution by centrifugation, and the resulting pellet of precipitate is allowed to dry before being resuspended in water or a buffer solution for further processing or analysis.
Conventional nucleic acid isolation procedures have significant drawbacks. Among these drawbacks are the time required for the multiple processing steps necessary in the extractions and the dangers of using phenol or chloroform. Phenol causes severe burns on contact. Chloroform is highly volatile, toxic and flammable. Those characteristics require that phenol be handled and phenol/chloroform extractions be carried out in a fume hood.
Another undesirable characteristic of phenol/chloroform extractions is that the oxidation products of phenol can damage nucleic acids. Only freshly redistilled phenol can be used effectively, and nucleic acids cannot be left in the presence of phenol. Generally also, multi-step procedures are required to isolate RNA after phenol/chloroform extraction. Ethanol (or isopropanol) precipitation must be employed to precipitate the DNA from a phenol/chloroform-extracted aqueous solution of DNA and remove residual phenol and chloroform from the DNA. Further, ethanol (or isopropanol) precipitation is required to remove some nucleoside triphosphate and short (i.e., less than about 30 bases or base pairs) single or double-stranded oligonucleotide contaminants from the DNA. Moreover, under the best circumstances such methods produce relatively low yields of isolated nucleic acid material and/or isolated nucleic acid material contaminated with impurities.
There is a need recognized in the art for methods, that are simpler, safer, or more effective than the traditional phenol/chloroform extraction/ethanol precipitation methods to isolate DNA and/or RNA sufficiently for manipulation using molecular biological procedures.
Fractionation of DNA recovered from cells according to size is required for many molecular biological procedures. Such fractionation is typically accomplished by agarose or polyacrylamide gel electrophoresis. For analysis or treatment by a molecular biological procedure after fractionation, the DNA in the fraction(s) of interest must be separated from contaminants, such as agarose, other polysaccharides, polyacrylamide, acrylamide, or acrylic acid, in the gel used in such electrophoresis. Thus, there is also a need in the art for methods to accomplish such separations.
Methods for amplifying nucleic acids or segments thereof, such as the well known polymerase chain reaction (PCR) process (see, e.g., U.S. Pat. No. 4,683,202), yield solutions of complex mixtures of enzymes, nucleoside triphosphates, oligonucleotides, and other nucleic acids. Typically, the methods are carried out to obtain an highly increased quantity of a single nucleic acid segment (“target segment”). Often it is necessary to separate this target segment from other components in the solution after the amplification process has been carried out. Thus there is a further need in the art for simple methods to accomplish these separations.
Silica materials, including glass particles, such as glass powder, silica particles, and glass microfibers prepared by grinding glass fiber filter papers, and including diatomaceous earth, have been employed in combination with aqueous solutions of chaotropic salts to separate DNA from other substances and render the DNA suitable for use in molecular biological procedures. See U.S. Pat. No. 5,075,430 and references cited therein, including Marko et al., Anal. Biochem. 121, 382-387 (1982) and Vogelstein et al., Proc. Natl. Acad. Sci. (USA) 76, 615-619 (1979). See also Boom et al., J. Clin. Microbiol. 28, 495-503 (1990). With reference to intact glass fiber filters used in combination with aqueous solutions of a chaotropic agent to separate DNA from other substances, see Chen and Thomas, Anal. Biochem. 101, 339-341 (1980). Vogelstein et al., supra, suggest that silica gel is not suitable for use in DNA separations. With regard to separation of RNA using silica materials and chaotropic agents, see Gillespie et al.,
Smith Craig E.
York Charles K.
Frenchick Gary J.
Lacourciere Karen
McGarry Sean
Michael & Best & Friedrich LLP
Promega Corporation
LandOfFree
Kits for isolating biological target materials using silica... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Kits for isolating biological target materials using silica..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Kits for isolating biological target materials using silica... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2904299