Surgery – Instruments – Blood vessel – duct or teat cutter – scrapper or abrader
Reexamination Certificate
2001-07-05
2003-02-18
Dvorak, Linda C. M. (Department: 3739)
Surgery
Instruments
Blood vessel, duct or teat cutter, scrapper or abrader
C600S104000, C600S114000
Reexamination Certificate
active
06520975
ABSTRACT:
FIELD OF THE INVENTION
This invention pertains to methods and devices for endovascular surgery, in particular to methods and devices for treating, repairing and removing blood vessels.
BACKGROUND OF THE INVENTION
Varicose veins are swollen, tortuous veins with abnormally functioning valves. It is a common, progressive condition that usually affects the veins of the leg, and results in pain, muscle cramps and a feeling of heaviness in the legs. For mild cases, elevation of the legs or elastic stockings can help relieve the symptoms. For more severe cases, particularly where there is significant impairment and disruption of quality of life, surgical intervention can be warranted.
Numerous surgical procedures and devices have been developed for the treatment of varicose veins. One method for treating varicose veins is injection therapy, whereby a sclerosing agent is injected into varicose veins, which irritates the inside walls of the veins, causing blockage of blood flow. In another technique for varicose veins in the leg, known as vein stripping, the saphenous vein is excised. Initially, a first incision is made near the ankle and a second incision is made near the groin (or knee). Through those incisions full veinotomies are made at opposite ends of the segment of vein to be removed, isolating that segment from the patient's circulatory system. Branch veins connected to the venous segment are ligated, usually through access gained through small incisions. A wire is then introduced through the first incision and into the distal (upstream) end of the vein. The wire is fed into the vein until the lead end of the wire exits from in the proximal (downstream) end of the vein segment. Next, a disk with a diameter slightly larger than the vessel segment diameter is attached to the wire at the lead end, and the surgeon slowly retracts the wire from the distal end of the vein segment, so that the disk engages the proximal end of the vein segment and “pushes” the proximal end of the vein segment toward the distal end and in due course out the first incision.
U.S. Pat. No. 5,022,399 to Beigeleisen describes an endoluminal device for treating varicose veins. The device consists of a modified venoscope with a multilumen catheter. The venoscope provides a fiber optic direct viewing apparatus in one lumen, a wire mounted, rotatable ultrasonic blood flow direction and velocity monitoring device, and an injection system in other lumens for administering sclerosing agents or cauterizing side branches. This patent discloses cauterizing or sclerosing varicose veins. U.S. Pat. No. 5,707,389 to Luow, also provides a method for cauterizing side branches of blood vessels using directed cauterizing catheters employed under endoscopic control. However, both the '399 and '389 patents teach methods and devices which leave the diseased vein in the patient, allowing the later development of varicose veins from currently normally functioning side branches or from recanalization of the original vessel.
U.S. Pat. No. 5,843,104 to Samuels, discloses a stripper head that is sutured to the end of a vein segment to be removed. The instrument is then retracted back through the vein segment, so that the vein segment is inverted and drawn to an exit port. Other similar stripper heads are known in the art. Because these stripper head devices apply tension to a small area of tissue, the vessel can tear and not be completely removed. Forceps and other tools, or more incisions may be necessary to complete the venous removal process.
In one form, the kit also provides a cautery device that extends through one lumen provided within the guide. The preferred cautery device includes an elongated flexible electrically non-conductive tubular sheath which surrounds a flexible elongated electrically conductive cauterizing element. Under operator control, the cauterizing element may be driven to extend beyond the end of the sheath and the guide. In one form, the cauterizing element has shape memory and is L-shaped when unconstrained, and is constrained to have the shape of one of the sheaths when retracted therein. Alternately, the sheath may have a deflector surface at its exit to direct the cauterizing element (and the sheath, in some forms) along a path angularly offset from the principal axis of the guide. The orientation of the cauterizing element about the sheath axis is operator controllable from the proximal end of the guide. With this configuration, selective cauterization of branch vessels may be effected.
The kit further includes an elongated phleboextractor extending between a proximal end and a digital end thereof. The phleboextractor is insertable through a lumen of the guide, and has an extractor device at its distal end. The extractor device is adapted for frictionally engaging tissue external to the end of the guide when the distal end of the phleboextractor extends beyond the distal end of the guide. The extractor device can be a balloon which can be selectively inflated to a shape having a diameter greater than that of the guide and deflated. The balloon may be elastic or inelastic. The outer surface of the balloon can be smooth, roughened or possess regions of both types of surfaces to provide secure engagement between the balloon and surrounding tissue. The phleboextractor is adapted so that upon deployment with its distal end beyond the guide, and its balloon inflated, the proximal end of the phleboextractor may be pulled from the first incision at the proximal end of the guide, with its distal end (and the extractor) device dragging with it the vein segment.
The kit may further include tubular a drain of porous flexible material which is adapted to be inserted into the second incision and connected to the phleboextractor at its distal end and be drawn into the surgical area as the
There exists a need for a device that allows visualization and location of the diseased veins, ligation of the diseased veins, and if necessary, removal of the main vein in a manner that causes the least trauma to the surrounding area, with minimal surgical intervention.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a kit for performing endovascular venous surgery. The kit provides an elongated flexible multilumen tubular guide extending along a guide axis from a proximal end to a distal end thereof. The distal end of guide is preferably beveled. In one embodiment the tubular guide has an outer diameter in the approximate range of 4-8 mm. This range is preferred for varicose vein treatment. In other embodiments, other diameters may be used, for example in the range of 1-12 mm, or greater, in some cases.
The tubular guide has at least a first lumen and second lumen each extending along axes substantially parallel to the guide axis. Alternately, the guide has a single lumen which serves as a support and guide for at least one or more tubular structures. Such structures also extend along respective axes from a proximal end to distal end, with those axes being substantially parallel to the guide axis.
An angioscope is positionable in one of the lumens. The angioscope is capable of providing an image of a surgical region of interest exterior to the distal end of the guide. The angioscope includes an elongated image transfer element extending along its axis from a proximal end to a distal end, and generates at its proximal end an image representative. of a region adjacent to its distal end. The angioscope may be either fixedly or removably positioned with a lumen. In a preferred embodiment, the angioscope has an image sensor at the distal end for generating an electronic image signal representative of the region adjacent its distal end. The image signal is transferred to processing equipment at the proximal end. More preferably, the angioscope is a fiber optic viewing device. phleboextractor is withdrawn through the first incision. The drain can be infused with pharmacological agents or collect wound drainage.
REFERENCES:
patent: 5022399 (1991-06-01), Biegeleisen
patent: 5599299 (1997-02-0
Dvorak Linda C. M.
McDermott & Will & Emery
Schopfer Kenneth
LandOfFree
Kit for endovascular venous surgery does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Kit for endovascular venous surgery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Kit for endovascular venous surgery will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3178190