Keyboard musical instrument

Music – Instruments – General features

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C084S433000

Reexamination Certificate

active

06545205

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a keyboard musical instrument for striking a sound generating body in response to key striking operation on a keyboard portion, and is particularly preferable when applied to a keyboard musical instrument having an action mechanism called the jumping-up style.
BACKGROUND ART
Currently, action mechanisms of the same style are mounted in keyboard musical instruments for performing a hammer action, such as a piano, although the action mechanisms are somewhat different from one keyboard musical instrument to another concerning a standard. That is, an English style action mechanism called the pushing-up style is employed in a modem piano.
However, in the nineteenth century, an action mechanism of the German style or the Viennese style called the jumping-up style was widely known as other mechanisms aside from this pushing-up style. Such a mechanism in the past, the historical transition of the jumping-up style to be described later, and the like are discussed in a book entitled “Vom Hammer” written by Walter Pfeiffer and published in 1979 (third edition). Further, the inventor of the present invention was interested in a keyboard musical instrument of this style and was inspired to start the manufacture of such a keyboard musical instrument by seeing photographs of a musical instrument Orphica, before confirming the contents of this book (approximately fifteen years ago).
Basic characteristics of this jumping-up style is that a rotational central axis of a hammer is attached to a key. The most important progress in an action mechanism of this jumping-up style was made in the eighteenth century. That is, Johann Andoreas Stein (1728 to 1792) devised excellent touch of playing by mounting tongue-like components independent for each key instead of parts to which beak-like protrusions of hammers existing in the rearward of keys that were arranged in a fixed rail shape hook on. This was the most important advance of the jumping-up style action mechanism, and determined the jumping-up style action mechanism.
The Stein's action mechanism did not have a back-check (an object serving to stop the motion of a hammer that strikes a string and jumps back after striking the string). However, it may be considered that it was Stein's achievement to have created the basic form of the German style action mechanism and have determined a final form of the jumping-up style action mechanism.
The world famous Viennese style action mechanism was taken over by Nanette who was Stein's daughter, and by her husband Johann Andoreas Streicher who was a manufacturer of keyboard musical instruments, and its originality was further developed. Therefore, the action mechanism was called the Viennese style instead of the German style when Stein's daughter Nanette got married to the Viennese man, and the action mechanism is often written as “the German Viennese style action mechanism” because both the German and Viennese styles have the same roots.
The improvement of Stein's style having the tongue-like components independent for each key has very light touch (feeling of play), does not cause any sense of increased pressure by let-off (motion or function for separating the motion of a key and the motion of a hammer before the hammer and a string collide with each other) to a player, and is easy to repeat striking keys. A key has the depth of approximately 6 millimeters and the heaviness (a value in grams at which a key is depressed) of 30 grams in bass range and 20 grams in treble range.
On the other hand, when a key is depressed, a current piano experiences increase of relatively large resistance, i.e., force of a key to push back at the time of let-off. The depth of a key is 9.5 to 10 millimeters. A grand piano of Steinway is a typical one of the few pianos whose heaviness of a key is low at approximately 47 grams in average.
Although such an improvement was added to the jumping-up style action mechanism, the trend of the world was in favor of the pushing-up style. This is because a decisive improvement, which is now practical, was added to the English style action mechanism which is a pushing-up style. That is the repetition action mechanism, which was invented in 1821 and then was evolved into the current grand piano action mechanism by further improvement in 1840.
A piano action cannot be prepared for the next string striking unless a key rises to “a certain height” by a performer lifting a finger after the key is depressed to generate sound (a string is struck) once. The repetition action mechanism is a mechanism that is devised such that “a certain height” required for preparation of string striking is as low as possible. With this mechanism, the function of repeated striking (to make repeated striking easy) can be improved.
As far as the inventor of the present invention knows, upright pianos except limited models of two manufacturing companies in the world do not have this function. Therefore, this function is a point for comparing performability of an upright piano and a grand piano. This is called “Kurzhubwerk” in German, which means “the lifting height lowering function”.
Moreover, the jumping-up style (the Vienna style) action mechanism had a critical structural problem. The inventor of the present invention also noticed the problem when the inventor tried to manufacture a keyboard musical instrument once approximately fifteen years ago, but did not notice that this problem is discussed in the literature “Vom Hammer” until recently. The structural problem that the Vienna style action mechanism has is namely that the rotational central axis of a hammer portion shifts in accordance with the movement of a key. This causes inconveniences described below.
Usually, it is common to assume the state in which a key is depressed to the lowest point when a string is struck, but a different state may be assumed, for example, a state in which a string is struck by instantly hitting a key with strong force. In other words, this state corresponds to staccato of forte.
In this case, although a hammer jumps up by the reaction of instant hit of a key with strong force to strike a string, the key is not in a state that it is fully depressed to the lowest point, but is somewhere on its way to the lowest point. In the Vienna style action mechanism, since the rotational central axis of the hammer is attached to the key, the position of the rotational central axis of the hammer at that time is in the position lower than the state where the key depressed is to the lowest point. As a result, since the positions of the rotational central axis of the hammer are different respectively in each of the above-mentioned two states, the hammer reaches the string forming different tracks in each state, and parts of the hammer head contacting the string are also different respectively.
Since a dislocation of the string striking point (the point where the hammer head contacts the string) arises in the longitudinal direction viewed from a performer, if strings are stretched in rows to cross the direction to which keys extend, the hammer not only does not strike an aimed string but may strike another string or a plurality of unnecessary strings of different sounds simultaneously. In addition, in the hammer side, since the large area of the hammer head contacts the strings at unspecified points, tones also become unstable and sound quality cannot be adjusted.
A Vienna style action mechanism
373
that adopts the above-mentioned jumping-up style is illustrated in
FIGS. 54 through 57
. As shown in
FIG. 54
, a keyboard body
305
having a keyboard portion (not shown) in the right side (in the figure) is swingably held by a pin
313
and a pedestal
315
. A supporting pole
375
is provided at the other end portion of the keyboard body
305
, and a base portion of a hammer body
377
is pivotally supported by a rotational central axis
378
at the top end of the supporting pole
375
to strike a string
307
.
A beak-like projecting piece
379
is mounted on the base end por

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Keyboard musical instrument does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Keyboard musical instrument, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Keyboard musical instrument will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3005947

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.