Drug – bio-affecting and body treating compositions – Topical body preparation containing solid synthetic organic... – Skin cosmetic coating
Reexamination Certificate
2001-04-30
2003-08-19
Page, Thurman K. (Department: 1615)
Drug, bio-affecting and body treating compositions
Topical body preparation containing solid synthetic organic...
Skin cosmetic coating
C424S401000, C424S402000, C424S443000, C424S446000, C424S078080, C424S078310, C424S078200
Reexamination Certificate
active
06607719
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a keratotic plug remover which excellently removes keratotic plugs formed in the pores of the skin, and a method of removing keratotic plugs from the skin utilizing such a keratotic plug remover.
2. Discussion of the Background
Having conspicuous pores in the skin is-a serious skin problem, especially for women, and is mainly caused, by keratotic plugs formed in the pores of the skin. Keratotic plugs are dead epidermal cells keratinized together with sebaceous matters and dirt which plug the pores of the skin. If proper treatment is not given; not only conspicuous pores but also various skin troubles result. Accordingly, removal of keratotic plugs is advisable in view-of the health and beauty of the skin.
Ordinary face detergents, make-up removers, however, cannot sufficiently remove the keratotic plugs.
Pack preparations, which are applied to the skin and, peeled off after dried, and which generally contain a nonionic polymer such as polyvinyl alcohol and polyvinyl pyrrolidone as a major component of a film forming agent, are still not sufficiently effective for removing dirt from the skin pores and especially for removing keratotic plugs.
Thus, there remains a need for a keratotic plug remover which can effectively remove keratotic plugs formed in the pores of the skin and a method of removing keratotic plugs from the skin utilizing such plug removers.
SUMMARY OF THE INVENTION
Accordingly, it is one object of the present invention to provide novel keratotic plug removers which effectively remove keratotic plugs from the skin.
It is another object of the present invention to provide a method for removing keratotic plugs from the skin which utilized such keratotic plug removers.
These and other objects which will become apparent during the following detailed description have been achieved by the inventors discovery that a keratotic plug remover which comprises a synthetic polymer having a salt forming group can effectively remove keratotic plugs and dirt from the pores of the skin.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The salt forming group of the polymer which is useful in the present invention is not particularly limited as long as it can form a salt in the presence of an acid or a base, and anionic, cationic and amphoteric groups are suitable. Examples of the salt forming group are carboxyl, sulfonic acid group, sulfuric acid residual group (—OSO
3
H), phosphoric acid residual group (—OPO
3
H
2
), nitric acid residual group (—NO
2
), amino group, ammonium group, and the like. Two or more of these groups maybe present in one compound.
The polymer compound which is useful in the present invention is preferably water-soluble from the viewpoint of good appearance, but it is not necessarily water-soluble for the purpose of achieving the effects of this invention. The compounds which are not water-soluble may take the form of dispersion and/or emulsion.
Examples of the polymers useful in the present invention include: hyaluronic acid, sodium hyaluronate, sodium chondroitin sulfate which are mucopolysaccharides; alginic acid, sodium alginate, ammonium alginate, sodium carboxylmethylcellulose, and carboxymethyl amylose which are hemicelluloses. These are of natural origin or semisynthesized polymers. In this invention, synthesized polymers are more preferable. Examples of the synthesized polymers include (A) polymers of one or more monomers listed in (1) to (3) below, (B) copolymers of the monomers as listed in (1) to (3) and another monomer which has no salt forming group, such as vinyl esters of aliphatic carboxylic acid such as vinyl acetate, (meth)acrylic esters such as methyl methacrylate, alkyl vinyl ethers such as methyl vinyl ether, N-vinyl cyclic amides such as N-vinylpyrrolidone, styrene and alkyl-substituted styrene, and (C) mixtures of the above-mentioned polymers.
(1) Anionic monomers:
Acrylic acid (AA), Methacrylic acid (MA), Malaic acid, itaconic acid and the like, which are unsaturated carboxylic acid monomers or their anhydrides or their salts;
Styrene sulfonic acid, 2-Acrylamide-2-methyl propane sulfonic acid (AMPS) and the like, which are unsaturated. sulfonic acid monomers or their salts;
Vinyl phosphonic acid, Acid phosphoxyethyl (meth) acrylate and the like, which are unsaturated phosphoric monomers.
(2) Cationic Monomers
Dimethylaminoethyl acrylate (DMAEA), Dimethylaminoethyl methacrylate (DMAEMA, Dimethylaminopropylacrylamide (DMAPAAm, Dimethylaminopropyl methacrylamide (DMAPMAAm), and the like, which are (meth)acrylamides or (meth) acrylic acid esters having a dialkylamino group; Dimethylaminostyrene (DMASt), Dimethyaminomethylstyrene (DMAMSt) and the like, which are styrenes having a dialkylamino group;
4-Vinyl pyridine, 2-vinyl pyridine and the like, which are vinyl pyridines;
Quaternarized products of these with a known quatenarizing agent such as alkyl halide, benzyl halide, alkyl or aryl sulfonic acid, or dialkyl sulfate.
(3) Amphoteric Monomers
N-(3-sulfopropyl)-N-acryloyloxyethyl-N,N-dimethylammonium betaine, N-(3-sulfopropyl)-N-methacroylamidepropyl-N,N-dimethylammonium betaine, N-(3-carboxymethyl)-N-methacroylamidepropyl-N,N-dimethylammonium betaine, N-carboxymethyl-N-methacroyloxyethyl-N,N-dimethylammonium betaine.
When the salt forming group of these polymers is not ionized, it is preferred to ionize it via neutralization with known acids such as hydrochloric acid and sulfuric acid which are inorganic acids; acetic acid, propionic acid, lactic acid, succinic acid, glycol acid which are organic acids, or with known bases such as triethylamine, trimethylamine which are tertiary amines; ammonia; or sodium hydroxide.
Among the mentioned polymer compounds, preferred ones in view of the mildness to the skin and high effectiveness for removing keratotic plugs are polymers of one or more cationic monomers, copolymers between one of these polymers and an amphoteric monomer or a monomer having no salt forming groups, and mixtures of these polymers.
Preferable examples of the cationic monomers include dimethylaminoethylacrylate (DMAEA), dimethylaminoethylmethacrylate (DMAEMA), Dimethylaminopropylacrylamide (DMAPAAm), dimethylaminopropyl methacrylamide (DMAPMAAm) and the like, which are (meth)acrylic esters or (meth)acrylamides having a dialkylamino group; and quaternary compound of them which are quaternarized with a known quaternarizing agent such as alkyl halide, benzyl halide, alkyl or aryl sulfonic acid or dialkyl sulfate. Among them, especially preferred are dimethylaminoethylmethacrylate (DMAEMA) and its quaternarized products; quaternarized products of dimethylaminopropyl methacrylamide (DMAPMAAm); polymers of one or more of these monomers; copolymers between one or more of these monomers and the above-mentioned monomers; and mixtures thereof.
The molecular weight (weight average) of these polymers is preferably in the range of from 10,000 to 1,500,000, and especially from 100,000 to 1,000,000. Molecular weights less than 10,000 will result in insufficient film strength and easily breakable films upon peeling-off. Polymers having a molecular weight over 1,500,000 are difficult to manufacture.
The preferable amount of the polymer to be incorporated into the keratotic plug remover preparation according to the invention is from 0.01 to 70% by weight, preferably 5 to 40% by weight based on the total weight of the preparation.
The above-mentioned synthesized polymers are used as dissolved in a solvent. The solvent useful in this invention is volatile and is not particularly limited as long as it can stably dissolve the polymers and is safe to the skin. Examples of such solvents include water, ethanol, isopropyl alcohol (IPA) and the like. They are used singly or in combination. The amount or the solvent is modified depending on the properties of the polymer compounds, optional ingredients and forms of the preparation, and is generally from 30 to 99.99% by weight, and preferably from 60 to 95% by weight, based on the total weight of the composition.
The eff
Kono Yoshinao
Muroi Yoshiyuki
Tanahashi Masanori
Uemura Tomohiro
Di Nola-Baron Liliana
Kao Corporation
Page Thurman K.
LandOfFree
Keratotic plug remover does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Keratotic plug remover, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Keratotic plug remover will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3094961