Chemistry: fertilizers – Processes and products – Organic material-containing
Reexamination Certificate
1998-11-16
2001-09-04
Griffin, Steven P. (Department: 1754)
Chemistry: fertilizers
Processes and products
Organic material-containing
C514S783000, C504S116100
Reexamination Certificate
active
06284012
ABSTRACT:
FIELD OF THE INVENTION
This invention relates, generally, to kelp/seaweed extract biocatalyst compositions, methods of making the kelp/seaweed extract biocatalyst compositions and methods of using these biocatalyst compositions. The biocatalyst compositions of the present invention are useful in wastewater treatment, bioremediation and the elimination of grease from grease traps and sewage systems. In addition, the biocatalyst compositions are useful in home, garden and lawn care applications.
BACKGROUND OF THE INVENTION
This invention relates to kelp/seaweed extract biocatalyst compositions, which are useful in clearing domestic, commercial and industrial grease traps of grease consisting of animal fats, primary triglycerides with some proteins, and vegetable oils. The biocatalyst compositions of the present invention are also useful in wastewater treatment facilities, bioremediation processes, and home, garden and lawn care applications.
As is well known in the art, complex proteins, celluloses, starches, fats, grease and other contaminants can cause drain clogging. Clogged drains are particularly acute in the food preparation business. Large quantities of oil, fat, starch, and grease are used in the preparation of food, or are a by-product of food preparation. Therefore, restaurants and other food preparation establishments provide, in their food preparation areas, what is referred to as a grease trap at the input point to the sewer or septic system. The grease trap is used to collect the oil, fat, starch, grease and other contaminants and to prevent contaminants from entering and impairing the operation of the sewer or septic system. The contaminants that find their way into the grease trap of a food preparation establishment are problematic in that they tend to solidify and clog the grease trap itself which may allow some contaminants access to the sewer or septic system.
Commercial and industrial grease traps are typically cleaned by removing the contents using a vacuum trick, or other mechanical means, for disposal of the contaminants elsewhere. Grease that has become impacted in drain lines and in the grease trap itself, is largely unaffected by this pumping operation, and negatively affects the effective operation of the grease trap. For example, the accumulation of solid material, including particles of food, frequently either totally or partially blocks the flow of effluent through the grease trap.
The cleaning of a grease trap is a dirty, smelly and generally unpleasant task. Consequently, there is an understandable reluctance on the part of food service personnel to clean the trap. If a trap is located in a high volume operation, it fills with grease very quickly and generally is effective only for a short period of time between cleanings. If the trap is not cleaned on a regular basis it becomes saturated with grease and other contaminants and looses its grease separating capability. When this happens, grease laden wastewater flows through the trap and into the downstream pumping which either causes clogging or discharging into the municipal sewage system. A clogged trap can also cause backup damage, interruption in service, and expensive emergency plumbing and drain cleaning charges.
The over taxing of municipal sewage treatment facilities, is becoming, a serious problem in many communities. Therefore, stringent regulations are being put in place which require a reduction in the volume of grease and insoluble solids, which may be discharged into municipal facilities. In addition, grease trapped waste is classified as a hazardous material in many areas. Accordingly, increased attention has been given to finding improved processes both for separating grease and solid materials from waste material and for recycling the separated solid materials for other uses.
The ideal solution to the problem of accumulated grease in a grease trap is the creation of a proper environment and ecosystem within the grease trap and connecting drain system which is conducive to the growth of bacterial microorganisms that are designed to biodigest the grease, thereby eliminating the problem, not only in the grease trap, but also in the drain system to which the grease trap is connected. Proper bacterial growth and bacterial biodigestion of the grease depends upon the creation of a chemically neutral, naturally stimulated, non-toxic environment in the grease trap.
Numerous prior art approaches have attempted to efficiently and cost effectively dispose of the grease, oils and fats found in grease traps. For example, U.S. Pat. No. 4,666,606 to Heinicke (the '606 patent) discloses that xeronine is useful in eliminating grease, sewage odor and hydrogen sulfide from restaurant grease traps and municipal sewage systems. The xeronine works by stimulating the metabolism of the resident anaerobic and aerobic bacteria. However, xeronine has a relatively short shelf life. Proxeronine, which is a precursor to xeronine is stable in solution at room temperature for extended periods of time. The '606 patent discloses that mixing proxeronine and proxeroninase at the site of use produces more reliable results than attempting to use the more labile xeronine. A five percent (5%) kelp extract is used as a source of proxeronine that is degraded by proxeroninase in the grease trap to form xeronine. The '606 patent discloses that the five percent (5%) kelp extract which is used as a source of proxeronine contains 125 ppm (w/w) proxeronine. The '606 patent discloses that proxeroninase is generally present in restaurant grease traps in sufficient quantities due to the disposal of milk into the grease trap. However, if a sufficient quantity of milk is not present proxeroninase must be added in the form of a whey-salt solution. The '606 patent posits that a small size grease trap with a daily throughput of five hundred gallons (500 gal.) of sink waste requires approximately one pint of kelp extract per day. This amounts to about 50 mgs of proxeronine per day or about 1.4 &mgr;g/gal. of kitchen waste provided a source of proxeroninase is also present. The invention disclosed in the '606 patent has several shortcomings. As a practical matter the instability of xeronine presents handling problems in that a source of proxeronine and proxeroninase must be present. Due to the instability of xeronine the sources of proxeronine and proxeroninase must be mixed immediately prior to use. The '606 patent does not teach how to prepare the 5% kelp extract that contains proxeronine. In addition, the scientific community has been unable to reproduce any of the results regarding the production and isolation of xeronine, proxeronine and proxeroninase.
U.S. Pat. No. 4,925,564 to Francis (the '564 patent) discloses methods for maintaining the level of bacterial growth within a grease trap. The method includes positioning, within the grease trap, a bacterial incubator that is adapted to float at the air to liquid interface. Bacterial cultures are then added to the incubator in the grease trap to facilitate the reduction of grease and other organic materials in the grease trap. A shortcoming of the invention of the '564 patent is that the solution containing the bacterial cultures must be prepared in advance and is added to the aqueous medium. Therefore, the great majority of the bacteria may flow through and past the collecting container. In addition, this loss of bacteria requires the use of large quantities of bacteria in order to maintain an effective bacterial level within the collecting container. Maintaining large quantities of bacteria is both time consuming and expensive.
U.S. Pat. No. 4,810,385 to Hater et al. (the '385 patent) discloses a porous fabric sock-like member filled with dried bacterial cultures. The sock is placed directly in the path of the waste stream flow. As the waste stream flows through the sock-like member the dried bacterial cultures or microorganisms are wetted and released into the waste stream. The invention of the '385 patent also results in loss o
Mundschenk David D.
Reid Paul
Griffin Steven P.
Nave Eileen E.
Vanderwall Robert J.
LandOfFree
Kelp/seaweed extract biocatalyst and methods of making same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Kelp/seaweed extract biocatalyst and methods of making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Kelp/seaweed extract biocatalyst and methods of making same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2544617