Kaolin clay glossing pigment and preparation thereof

Compositions: coating or plastic – Materials or ingredients – Pigment – filler – or aggregate compositions – e.g. – stone,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S416000, C106S468000, C106S487000, C162S135000, C162S137000, C162S181800, C428S211100, C428S511000

Reexamination Certificate

active

06585822

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to kaolin clay pigments and to the production thereof. In particular, the invention relates to a novel scheme for processing kaolin clay that results in unique ultrafine (nanosized) kaolin clay particles that have a smooth surface and have a substantially round shape. The invention relates also to the use of the new clay pigments in producing quality ink jet printing paper.
RELATED ART
It is known that surface characteristics of paper (or any other printing surface) play a large role in how ink will be received and appear after application to the printing surface. Thus, varying print appearances can be expected depending on whether the surface ink is being applied to is uncoated or coated. Printing on uncoated paper results in low quality printing while printing on coated paper results in a higher quality print albeit of varying quality according to the nature of the paper coating compositions.
Kaolin clay is widely used, and has been used for many years, as a pigment to coat various paper products. In general, finer size fractions of kaolin clay are used to coat paper when a high gloss surface finish is desired. Coarser fractions, including delaminated grades, are used when opacification is sought. Typically, #2 coating clays are about 80% by weight finer than 2 microns; #1 coating clays are typically about 90% by weight finer than 2 microns; fine high glossing (FHG) clays are about 50% finer than 0.5 microns. These sizes are conventionally measured by sedimentation techniques; these measurements assume a spherical shape although fine particle size kaolin particles, especially those finer than 2 microns are platy and not spherical.
Kaolin products tend to have a wide distribution of sizes within a designated range. This is referred to as a “polydisperse particle size distribution.” For example, in the case of commercial FHG kaolin pigments, the finest grades may contain many particles in the range of 0.3 to 2 microns although median size is about 0.3 microns.
It is well known that particle size distribution has a significant effect on the properties of the kaolin pigment as well as the utility in printing by conventional means such as rotogravure. More specifically narrow particles size distribution is known to affect particle packing. Narrow particle size distribution influences the porous structure of the coating, resulting in enhanced performance and often improves the printability. However, narrow particle size is frequently associated with undesirably high viscosity. To the best of our knowledge, narrowing of particle size distribution has been utilized with conventional coating clay fractions, delaminated and nondelaminated, especially these intended for use in gravure printing.
The particle shapes of kaolin pigments vary depending among other things on the clay source and processing, especially processing that is reflected in particle size distribution. Thus, individual clay platelets are typically flat particles finer than 2 microns (determined by sedimentation). Aggregates of kaolin clay platelets tend to have a higher ratio of diameter to thickness. Mechanical or chemical delamination of kaolin (originally composed of stacks of individual platelets) results, as expected, in an increase of the diameter thickness ratio. The ratio of diameter to thickness is conventionally referred to as “aspect ratio”. In some cases, aspect ratio is calculated from sedigraphic data.
With the advance of transmissions electron microcopy (TEM), aspect ratios of kaolin can be measured with better accuracy and for fine particles such as the one described in this invention aspect ratios were determined by the method as stated in the reference “Kaolin Aspect Ratios Determined by Automated Microscopy and Electron Energy Loss Spectroscopy” by Vanderwood et al. In Process Mineralogy XIII, The Minerals, Metals & Materials Soc. 1995. The method involves image acquisition and analysis techniques to determine the platelet diameters, combined with parallel electron energy loss spectroscopy to measure thickness of the same platelets. In this method, kaolin samples were dispersed, deposited on a TEM (Transmission Electron Microscope) grid and allowed to dry. The TEM grid loaded with kaolin particles was then examined under TEM and several hundreds of particles were imaged and their average diameter determined under computer control. The samples and their images were then transferred to a transmission electron microscope equipped for Parallel Electron Energy Loss Spectroscopy (PEELS). Previously sized particles were then subjected to PEELS analysis, and the degree of electron scattering for each particle was recorded. A calibration curve of the electron scattering vs. particle thickness was used to determine the particle thickness from PEELS data. All the data were then subjected to off-line statistical analysis for the summarization and presentation of results.
One of the newest uses of specialty coated paper is in modern ink jet paper. This is a uniquely demanding application where quality paper is sought, especially when multicolor printing is used. Matte or low gloss coated paper for ink jet printing are produced by applying porous pigment particles and a binder to the paper. A recent advance in the art of ink jet pigments is described in commonly assigned U.S. Pat. No. 5,997,625, Londo et al and is commercially available under the trademark DIGITEX. The teachings of the '625 patent are incorporated herein by cross-reference.
In accordance with a preferred embodiment of the invention of the '625 patent, the coating pigment composition comprises:
(a) a hydrous clay; preferably hydrous kaolin clay
(b) a caustic leached calcined kaolin clay; and
(c) a porous material having a pore size of up to 100 Angstroms and a BET surface area in the range of 200 to 1000 m
2
/g; preferably zeolite Y,
wherein (a), (b) and (c) are present in relative amounts such that said pigment composition when present in a coating produces substantially equivalent ink contact angles when said coating receives more than one type of colored ink.
Advantages of the compositions of the invention of the '625 patent over the prior art porous silica include improved rheology and higher coating solids. This allows the high speed paper and coating machines to produce an ink-jet coated grade of paper not previously capable of being produced. The material described in the '625 patent also offers a substantial reduction in cost over the silica pigment. Yet another unexpected result is that this pigment requires less coatweight and binder than the conventional silica coatings. Also, acceptable coatings can be made without the need for dispersants.
Two of the more important characteristics to be controlled in color ink jet printing are depth of penetration and feathering or bleeding of the ink when applied to the paper. Too deep of a penetration results in poor color intensity. Bleeding results in poor printing definition. A further criterion is to control the contact angle of the various ink jet colors (i.e., cyan, magenta, yellow and black) in a manner that the inks will substantially have the same contact angle when applied to the coated paper. When the contact angles of the various inks are substantially the same, the appearance of the ink colors are more uniform, i.e., one color does not appear more dull or more bright than another color.
Prior to this invention, an expensive non-pigmented overcoat of an hydrophilic resin was applied to the inkjet paper to achieve gloss. The overcoat was selected to avoid interaction between the overcoat and the inks so that the ink is accessible to the receptor coated paper. One reason for using a non-pigmented overcoat is that conventional paper coatings formulated with traditional kaolin pigments and organic binders and applied to paper at conventional coating weights, can adversely affect ink-jet printability.
The increasing demand for high print quality from ink jet printers presents challenges to the coating pigment industry

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Kaolin clay glossing pigment and preparation thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Kaolin clay glossing pigment and preparation thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Kaolin clay glossing pigment and preparation thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3097928

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.