Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues
Reexamination Certificate
2007-05-15
2007-05-15
Gambel, Phillip (Department: 1644)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
C530S387300, C514S012200, C424S134100
Reexamination Certificate
active
10704072
ABSTRACT:
Novel cell surface molecules recognized by monoclonal antibodies against a cell surface molecule of lymphocytic cells that play an important role in autoimmune diseases and allergic diseases have been isolated, identified, and analyzed for their functions. The cell surface molecules are expressed specifically in thymocytes, lymphocytes activated by ConA-stimulation, and peripheral blood lymphocytes, and induce cell adhesion. Antibodies against the cell surface molecules significantly ameliorate pathological conditions of autoimmune diseases and allergic diseases.
REFERENCES:
patent: 5484892 (1996-01-01), Tedder et al.
patent: 5506126 (1996-04-01), Seed et al.
patent: 5521288 (1996-05-01), Linsley et al.
patent: 5770197 (1998-06-01), Linsley et al.
patent: 5914112 (1999-06-01), Bednar et al.
patent: 6075181 (2000-06-01), Kucherlapati et al.
patent: 2002/0164697 (2002-11-01), Coyle et al.
patent: 2002/0177191 (2002-11-01), Kroczek
patent: 2002/0182667 (2002-12-01), Kroczek
patent: 2005/0261489 (2005-11-01), Kroczek
patent: 133209/99 (1999-04-01), None
patent: 19821060 (1999-04-01), None
patent: 0 984 023 (2000-03-01), None
patent: 1 125 585 (2001-08-01), None
patent: 11-228442 (1999-08-01), None
patent: 2000-154151 (2000-06-01), None
patent: WO 95/33770 (1995-12-01), None
patent: WO 97/26912 (1997-07-01), None
patent: WO 98/11909 (1998-03-01), None
patent: WO 98/19706 (1998-05-01), None
patent: WO 98/37415 (1998-08-01), None
patent: WO 98/38216 (1998-09-01), None
patent: WO 98/45331 (1998-10-01), None
patent: WO 00/19988 (2000-04-01), None
patent: WO 00/46240 (2000-08-01), None
patent: WO 00/67788 (2000-11-01), None
patent: WO 01/08700 (2001-02-01), None
patent: WO 01/12658 (2001-02-01), None
patent: WO 01/15732 (2001-03-01), None
patent: WO 01/18022 (2001-03-01), None
patent: WO 01/21796 (2001-03-01), None
patent: WO 01/32675 (2001-05-01), None
patent: WO 01/64704 (2001-09-01), None
patent: WO 01/87981 (2001-11-01), None
patent: WO 02/44364 (2002-06-01), None
patent: WO 02/070010 (2002-09-01), None
patent: WO 02/076504 (2002-10-01), None
BPAI Judgment Bd.R 127(b) in priority application U.S. Appl. No. 09/561,308, Jun. 21, 2005; Patent Interference No. 105,168.
Aicher et al., “Characterization of Human Inducible Costimulator Ligand Expression and Function,” J. Immunol., 164(9):4689-4696 (2000).
Bajorath “A molecular model of inducible costimulator protein and three-dimensional analysis of its relation to the CD28 family of T cell-specific costimulatory receptors,” J. Mol. Model. 5:169-176 (1999).
Beier et al., “Induction, binding specificity and function of human ICOS,” Eur. J. Immunol., 30(12):3707-3717 (2000).
Brodie et al., “LICOS, a primordial costimulatory ligand?” Current Biology, 10(6):333-336 (2000).
Buonfiglio et al., “Characterization of a novel human surface molecule selectively expressed by mature thymocytes, activated T cells and subsets of T cell lymphomas,” Eur. J. Immunol., 29(9)2863-2874 (1999).
Buonfiglio et al. “The T cell activation molecule H4 and the CD28-like molecule ICOS are identical,” Eur. J. Immunol., 30:3463-3467 (2000).
Cameron “Recent advances in transgenic technology” Molecular Biotechnology 7:253-65 (1997).
Chambers, “The expanding world of co-stimulation: the two-signal model revisited,” Trends in Immunology, 22(4):217-223 (2001).
Cocks et al. “A novel receptor involved in T-cell activation,” NATURE, 376:260-263 (Jul. 20, 1995).
Coyle et al., “The CD28-Related Molecule ICOS Is Required for Effective T Cell-Dependent Immune Responses,” IMMUNITY, 13:95-105, (2000).
Dong et al., “Cutting Edge: Critical Role of Inducible Costimulator in Germinal Center Reactions,” J. Immunol., 166(6):3659-3662 (2001).
Dong, “ICOS co-stimulatory receptor is essential for T-cell activation and function,” NATURE 409(6816):97-101 (2001).
Goding, “Monoclonal Antibodies: Principles and Practice,” 2ndEdition, Academic Press, Orlando, Florida, Chapter 8, pp. 281-293 (1986).
Gonzalo et al., “The Related Molecules CD28 and Inducible Costimulator Deliver Both Unique and Complementary Signals Required for Optimal T Cell Activation,” J. Immunol., 166(1):1-5 (2001).
Guo et al., “Stimulatory Effects of B7-Related Protein-1 on Cellular and Humoral Immune Responses in Mice,” J. Immunol., 166(9):5578-5584 (2001).
Harlow and Lane, “Antibodies: A Laboratory Manual,” Cold Spring Harbor Laboratory, p. 285 (1988).
Hanzawa et al., “Characteristics of a TTH1 antibody which blocks an unknown adhesion phenomenon,” Proceedings of the Japanese Society for Immunology, vol. 24, Abstract No. W17-13 (1994) [Original Japanese and English Language Translation].
Heyeck et al. “Developmental regulation of a murine T-cell-specific tyrosine kinase gene, Tsk,” Proc. Natl. Acad. Sci. USA, vol. 90, pp. 669-673 (1993).
Houdebine “Production of pharmaceutical proteins from transgenic animals” J. Biotechnol. 34:269-87 (1994).
Hutloff et al. “ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28,” NATURE 397:263-266 (1999).
Ishikawa et al., “Prediction of the Coding Sequences of Unidentified Human Genes. X. The Complete Sequences of 100 New cDNA Clones from Brain Which Can Code for Large Proteins in vitro,” DNA Research, 5:169-176 (1998).
Kappel et al. “Regulating gene expression in transgenic animals” Current Opinion in Biotechnology 3:548-53 (1992).
Kopf et al., “Inducible Costimulator Protein (ICOS) Controls T Helper Cell Subset Polarization after Virus and Parasite Infection,” J. Exp. Med., 192(1):53-61 (2000).
Kuchroo et al. “B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: Application to autoimmune disease therapy,” CELL, 80:707-718 (Mar. 10, 1995).
Ling et al., “Identification of GL50, a Novel B7-Like Protein That Functionally Binds to ICOS Receptor,” J. Immunol., 164(4):1653-1657 (2000).
Mages et al. “Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand,” Eur. J. Immunol. 30:1040-1047 (2000).
Marguet et al. “cDNA Cloning for Mouse Thymocyte-activating Molecule,” The Journal of Biological Chemistry, vol. 267, No. 4, pp. 2200-2208 (1992).
McAdam, “ICOS is critical for CD40-mediated antibody class switching,” NATURE 409(6816):102-105 (2001).
McAdam, “Mouse Inducible Costimulatory Molecule (ICOS) Expression Is Enhanced by CD28 Costimulation and Regulates Differentiation of CD4+T Cells,” J. Immunol., 165(9):5035-5040 (2000).
McAdam et al., “Mouse inducible costimulatory (ICOS) molecule expression is increased by CD28 costimulation and regulates development of Th2 cells,” FASEB Journal, 14(6):A1169 (2000).
Mueller et al., “T cells: A proliferation of costimulatory molecules,” Curr. Biol. 10(6):R227-R230 (2000).
Mullins et al. “Expression of the DBA/2J Ren-2 gene in the adrenal gland of transgenic mice” EMBO J., 8:4065-72 (1989).
Mullins et al. “Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene” NATURE, 344:541-44 (1990).
Mullins et al. “Transgenesis in nonmurine species” Hypertension 22:630-33 (1993).
Niemann “Transgenic farm animals get off the ground” Transgenic Research, 7:73-75 (1998).
Nojima et al. “The 4F9 antigen is a member of the tetra spans transmembrane protein family and functions as an accessory molecule in T cell activation and adhesion,” Cellular Immunology, 152:249-260 (1993).
Overbeek “Factors affecting transgenic animal production,” Transgenic Animal Technology, A Laboratory Handbook 96-98 (1994).
Özkaynak et al., “Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection,” Nature Immunology 2(7
Tamatani Takuya
Tezuka Katsunari
Fish & Richardson P.C.
Gambel Phillip
Japan Tobacco Inc.
Ouspenski Ilia
LandOfFree
JTT-1 protein and methods of inhibiting lymphocyte activation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with JTT-1 protein and methods of inhibiting lymphocyte activation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and JTT-1 protein and methods of inhibiting lymphocyte activation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3752965