Joint structure and method for making a joint structure

Land vehicles: bodies and tops – Bodies – Structural detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C296S205000, C403S268000, C403S270000, C403S271000

Reexamination Certificate

active

06598923

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention generally relates to joint structures and methods for forming joint structures that are ideally suited for use in a vehicle body-in-white More specifically, the invention provides both a friction welded joint assembly in which lineals and sheet, cast or extruded components are joined together and a structure and method for improving the stability of the joint structure.
2. Description of the Prior Art
It is known that various structural components for automobiles and other vehicles can be made from aluminum and other light metal alloys. Considerable development work is now underway with an objective of utilizing aluminum and other light metal alloys in the primary body structure of a vehicle or, as it is often called, the “body-in-white.” An automobile chassis or body-in-white comprised of light metal alloys weighs considerably less than a steel frame that has been designed to satisfy the same requirements of safety and durability. A vehicle utilizing such a body-in-white produced from light metal alloys has improved fuel efficiency without sacrificing performance. Moreover, if the alloy utilized is an aluminum alloy, it is more easily recycled than a steel frame vehicle, and it offers improved corrosion resistance. In addition, it is known that a body-in-white utilizing space frame technology will distribute and absorb the forces encountered in the normal operation of an automobile as well as absorb and dissipate the energy of a crash or rollover.
By way of brief explanation, the space frame is a latticed framework of structural beams and columns that are joined together at their ends. These structural components of the space frame, which are sometimes referred to as lineals, are connected together by mechanical means such as bolts, rivets and clinches, by welding and adhesive bonding, and by a combination of the aforedescribed methods. Another method for connecting the lineals of a space frame is by the use of separate joining components or connecting members which are often referred to as “nodes” into which the lineals are designed to fit. The lineals are then securely attached to the nodes by any of the known connecting methods referred to above. An example of this technology is found in U.S. Pat. No. 4,618,163 which pertains to an automobile chassis that includes lineals and nodes. This patent is incorporated herein by reference as if fully set forth herein. If the lineals are to be joined by means of connecting members or nodes, the nodes are typically cast or otherwise formed in a separate manufacturing operation. If the lineals are to be mechanically attached to each other or to nodes by means of bolts or other fasteners appropriate holes must be provided in the several components. In the alternative, or in addition, welding, soldering, or adhesive bonding equipment and materials may be required to effect the joining of the components. Furthermore, the tolerances of the various components that are to be assembled together must be exact, in order for holes to align with other holes or with protrusions or in order for the surfaces to fit together for welding, soldering or adhesive bonding. Finally, the complete frame is assembled in a series of discreet steps involving the joining of individual lineals to nodes or to other lineals or components in order to form subassemblies and then the subsequent joining of the various subassemblies to form the entire body-in-white space frame. As noted above, U.S. Pat. No. 4,618,163 to Hasler et al., describes an automobile space frame chassis that is made from a plurality of tubular light metal lineals that are held together by connecting members also made from light metal. Hasler et al. discloses the use of tubular members assembled by inserting their end sections into recesses in the connecting or receiving members. However, this technique has the disadvantage that the last member to be mounted in an assembly or subassembly could only be mounted by flexing or bending the structure. The elongated frame members of Hasler et al. are secured to the connecting members by welding, soldering or cementing or by the use of mechanical fasteners such as bolts, screws, and rivets.
U.S. Pat. No. 5,381,849 to Fussnegger et al. discloses a method for casting a connecting member onto the end of a hollow section such as an extruded aluminum frame member. According to this method, an end of the hollow section is placed in a mold with the end of the hollow section closed with a plug to prevent penetration of cast material therein. This method is not used to join extruded frame parts to each other but rather to join them to a cast frame member. These cast frame members are complicated solid structures that are formed in complicated molds. In addition, because the Fussnegger et al. castings may be of considerable size, they may add considerable weight to the frame structure formed by this method. It clearly is desirable to join together the components of a space frame by a simple process that minimizes manufacturing steps, compensates for tolerances at the joints and is economical to implement.
SUMMARY OF THE INVENTION
The invention provides a joint structure ideally suited for use in the manufacture of assemblies and subassemblies in aluminum structures. More particularly, the alternative joint structures and methods of forming joint structures facilitate the assembly of a vehicle body-in-white. The friction welded joints of this invention provide assemblies in which lineals and sheet, cast, or extruded components are joined together.
The invention includes a joint structure having a first component with a lineal member having a pair of ends, at least one second component having a surface and a boss extending from the surface and terminating in a boss face, the second component defining an opening extending through the boss, wherein the opening receives one end of the lineal member such that the boss face and the end of the lineal member are coterminous, and a cap member adapted to be mounted onto the coterminous ends of the lineal member and boss face. Preferably, the cap member is friction welded to the end of the first component and the boss face. The boss has an inside diameter which tapers from a first diameter proximate said boss face, to a second diameter distal therefrom and a gap is defined in the opening between the boss and the lineal member.
A sleeve may be received in the gap and has a first face and a second face such that when positioned in the gap, the sleeve second face is proximate the cap member. The sleeve preferably is discontinuous such that a diameter of the sleeve is variable and the second face may include means for removably engaging the sleeve with said cap member inner face such as a plurality of teeth adapted to contact the cap member. Suitable materials for the sleeve include aluminum, steel, and plastic. When the sleeve first diameter is smaller than the sleeve second diameter, the sleeve outside surface tapers in a direction opposite from the direction of taper of the boss inside diameter and includes a plurality of raised members adapted to engage the boss.
The joint structure may include another second component adapted to receive the other end of the lineal member, wherein the first component and the two second components constitute a vehicle subassembly. The first component may be an aluminum product form such as a sheet product, an extruded product, and a cast product. The second component may be an aluminum product such as a sheet product, an extruded product, and a cast product. While at least one end of the lineal member has a circular cross-section, a mid-portion between the ends may have a different cross-sectional configuration than the end having a circular cross-section. Lineal members having noncircular cross-sectional configurations in their mid-portion may be sheet products, extrusions or castings suitable as components in a vehicle body-in-white subassembly. For sheet product formed into a lineal member, a reinforcing means such as a b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Joint structure and method for making a joint structure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Joint structure and method for making a joint structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Joint structure and method for making a joint structure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3092658

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.