Pipe joints or couplings – With assembly means or feature – With holding means functioning only during transportation...
Reexamination Certificate
1999-06-11
2001-01-16
Arola, Dave W. (Department: 3627)
Pipe joints or couplings
With assembly means or feature
With holding means functioning only during transportation...
C285S337000, C285S404000
Reexamination Certificate
active
06173993
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a joint restraint for connecting a pair of axially aligned pipes and/or appurtenances such that a tight fit and suitable seal are formed therebetween, and such that protection is provided against the disengagement that could occur when force is applied in the axial direction.
2. Description of Related Art
It is known to employ a joint restraint to prevent disengagement of axially aligned pipes and/or appurtenances. For purposes of this application, pipes and/or appurtenances shall be referred to herein collectively as “pipes” or in the singular as “pipe”. Typically, a joint restraint comprises an annular body from which a plurality of evenly spaced wedge housings axially extend. The annular body encircles the outer surface of a first pipe, and is engaged therewith using actuatable wedges held within each of the wedge housings. The annular body is also connected to an integral flange disposed at the terminus of a second pipe, so as to hold the first and second pipes together.
Examples of joint restraints, the pipes with which they function and associated equipment may be found in U.S. Pat. No. 4,092,036 to Sato et al. (“Sato '036”), U.S. Pat. No. 5,071,175 to Kennedy, Jr. (“Kennedy '175”), and U.S. Pat. No. 5,544,922 to Shumard et al. (“Shumard '922”), the entire disclosures of which are incorporated herein by reference.
Joint restraints used in the past have suffered from several disadvantages that have diminished their functionality and ease of use, and that have resulted in increased manufacturing costs. For example, many joint restraints employed in the past required the use of sand cores in casting the wedge housings. Because the use of such sand cores increases processing time and expense, it is desirable to employ a design that minimizes or eliminates the need for such sand cores.
Another disadvantage of joint restraints employed in the past is diminished or unpredictable performance with plastic pipe (e.g., PVC). Many joint restraints rely on friction between a gripping surface or mechanism such as wedges, wedge rings and serrated split rings and the pipe surface to secure the pipe. However, the behavior of such friction-based means is unpredictable when used with PVC, and the friction force that may be induced is limited.
The Kennedy '175 joint restraint addresses this problem by employing a wedge having pipe-engaging teeth that may be driven into engagement with the pipe surface. The Kennedy '175 joint restraint, however, has several disadvantages. Specifically, the design requires the use of sand cores in casting, the design lacks a reliable method of keeping the wedge in place and the wedge does not retract when the actuating screw is retracted.
The Kennedy '175 disclosure contemplates the use of a twist-off bolt to reduce the possibility of preventing the wedge from being over-torqued during initial actuation. Ideally, however, the wedge itself should resist further intrusion into the pipe surface after the initial actuation groove is formed.
Another disadvantage of conventional joint restraints is their lack of flexibility. For example, in the Kennedy '175 patent, once the joint restraint is installed on the pipe, the position of the wedges is fixed, other than a relatively minor amount of radial play, with respect to their respective wedge housings. It is desirable to allow the wedges some freedom to move within their respective housings independently of the joint restraint in order to increase the capacity of the system to accommodate joint deflection resulting from settlement or other force on the pipes. Likewise, it is advantageous to allow some play in the radial displacement of an installed wedge in order to accommodate greater variations in pipe size without the need for shims or spacers.
Yet another disadvantage of conventional joint restraints is the typical lack of means for retaining wedges or other restraint means in their respective housings prior to installation in the field. Such retaining means are desirable in order to allow preassembly of wedges into a joint restraint, and to reduce the likelihood of subsequent wedge loss.
A need exists, therefore, for a simple and robust joint restraint that provides reliable restraint, that minimizes the use of cores in molding, that is easy to assemble, install and use, and that is multi-functional and flexible with respect to pipe size and type. Such a device should also provide a mechanism for retaining wedges in their housings prior to or after installation.
SUMMARY OF THE INVENTION
The apparatus of the present invention overcomes the above-mentioned disadvantages and drawbacks which are characteristic of the related art.
In a preferred embodiment, the joint restraint of the present invention comprises an annular body having a plurality of axially extending wedge housings. The annular body is adapted to encircle and engage the end of a first pipe, and to connect to the terminal flange of a second pipe in the manner contemplated by the Sato '036 and Kennedy '175 patents. In a preferred embodiment, the wedge housings are uniformly distributed around the annular body and each wedge housing defines a pocket adapted to receive a bolt and a wedge.
In a preferred embodiment, the pocket defined by the wedge housing has no radially inner surface, being bounded instead by the outer surface of the first pipe when installed. In a preferred embodiment, the wedge pocket face opposite the annular extension is also open, allowing for coreless casting of the wedge housings.
In a preferred embodiment, a bolt hole passes through the radially outer wall of the wedge pocket. During actuation, the bolt is inserted through the hole, into the wedge pocket and towards the pipe. Preferably, the hole and bolt are threaded so that the bolt may be threadedly engaged within the bolt hole. The wedge, which is disposed between the end of the bolt and the pipe surface, is thus acted upon by the bolt.
Each wedge comprises a radially outer top surface, a front surface which faces into the pocket, an opposite rear surface, two side surfaces, and a bottom surface. The top surface of the wedge is adapted to receive the end of the bolt. Preferably, a groove is disposed in the top surface of the wedge and is adapted to receive the end of the bolt. The groove preferably inclines with respect to the bottom surface from the rear surface to the front surface of the wedge. As the end of the bolt moves from the rear surface to the front surface of the wedge, the wedge exerts an increasing grip on the pipe. The orientation of the groove is such that, in an initial set position, the groove at the rear surface of the wedge is radially closer to the pipe surface than the groove at the front surface of the wedge.
In a preferred embodiment, the bottom surface of the wedge is curved to correspond to the curvature of the outer surface of the pipe, and comprises two parallel pipe-engaging teeth. The first tooth is disposed below the groove and is adapted to penetrate the pipe surface upon initial actuation of the wedge.
In a preferred embodiment, the second tooth is disposed between the first tooth and the front of the wedge. The second tooth is larger than the first, and only penetrates the pipe surface after pressurization. Although the second tooth may contact the pipe surface before the first tooth during actuation, the second tooth does not penetrate the pipe surface. Instead, the wedge rotates to focus penetrating force at the first tooth.
In a preferred embodiment, a tapered portion at the bottom of the wedge extends from the first tooth to the rear surface of the wedge and acts as a large bearing area when the bolt operates upon the wedge. The bearing is seated against the pipe surface when the first tooth is fully embedded, and provides resistance to further torque on the bolt by distributing the load over a large surface.
Once the wedge is actuated, motion of the first pipe away from the second pipe causes the first pipe
Lundstrom Michael L.
Shumard Dennis D.
Akin Gump Strauss Hauer & Feld L.L.P.
Arola Dave W.
Brown Randall C.
EBAA Iron, Inc.
Wirthlin Alvin R.
LandOfFree
Joint restraint does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Joint restraint, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Joint restraint will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2454111