Bearings – Rotary bearing – Antifriction bearing
Reexamination Certificate
1999-12-10
2001-11-27
Hannon, Thomas R. (Department: 3682)
Bearings
Rotary bearing
Antifriction bearing
C384S569000, C384S585000, C384S473000, C384S485000
Reexamination Certificate
active
06322255
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a joint bearing between two structural elements wherein one is connected with the connecting joint and the other with the hinge pivot, suitably for warp knitting machines, and having (a) an outer ring pressed into the connecting joint, and (b) a cage located between the hinge pin and the outer ring, with cylindrical roller bodies and stops for the actual axial guidance of the cage; as well as versions wherein one of the structural elements is connected to the connecting joint and the other to the hinge pin.
2. Description of Related Art
Swinging movements are necessary for the formation of stitches in warp knitting machines, among other things. These movements are created, for example, by coupling mechanisms in the machine bed and transmitted to the levers carrying the knitting elements via push rods. Since these push rods are driven in pushing and pulling directions, they must be connected with the levers via hinges. This problem also arises with other machines, for example printing machines.
In the known, commercially available warp knitting machines, commercially available needle roller bearings are introduced into the eye of the hinge. Actually, these bearings are designed for rotational movement. In warp knitting machines however, they only swing over a rather small range angle of about 10°. They are however subject to rather high alternate loading (acceleration greater than 1,000 m/sec
2
). In order that they are not destroyed, they must be provided in a play-free environment. This is achieved when the outer ring of the joint bearing is pressed into the connecting joint, in such a way that in the at-rest position, there is a pretensioning. In order that this does not negatively affect the roundness of the inner circumference of the outer ring, the latter must have comparatively large wall strength. In the known case, the outer ring is provided at both ends with an inwardly protruding stop, which secures the axial position of the needle cage for the needle bearing. The lever is connected with a hinge pin by means of a clamping cap, which lies outside the hinge pin. Because of the high acceleration, it is also important that the moved mass is minimal. One has principally attempted to achieve this end by the use of light metal.
SUMMARY OF THE INVENTION
In accordance with the illustrative embodiments demonstrating features and advantages of the present invention, there is provided a joint bearing between two structural elements, one being connected with a connecting joint and the other with a hinge pin, suitably for warp knitting machines. This joint bearing has an outer ring and a cage. The outer ring is adapted for pressing into the connecting joint. The outer ring is so thin-walled that after pressing into place, its inner circumference must be reworked to restore roundness. The cage is located between the hinge pin and the outer ring, and has (a) a plurality of cylindrical roller bodies, and (b) a pair of stops for the actual axial guidance of the cage. The outer ring stretches substantially only along the length of the roller bodies. The stops are separated from the outer ring and are adapted for attachment to the connecting joint.
In accordance with another aspect of the present invention the foregoing joint bearing has, in combination, a connecting joint and a tubular hinge pin. The joint bearing also has a lever with a concavity lying in contact with the outside of the tubular pin. The lever is attached to the tubular pin by at least one fastener protruding out of the interior of the tube. The outer ring is pressed into the connecting joint and reworked to restore roundness.
In accordance with another aspect of the present invention, a method is provided for installing a joint bearing in combination with two structural elements, suitably for warp knitting machines. The method employs a connecting joint, a tubular hinge pin, a lever with a concavity, a thin-walled outer ring, and a cage with a plurality of cylindrical roller bodies, and a pair of stops. The method includes the step of pressing the outer ring into the connecting joint and reworking the outer ring to restore roundness. The outer ring is so thin-walled that after pressing into place, its inner circumference must be reworked to restore roundness. Another step is installing the tubular hinge pin and the cage inside the outer ring by: (a) locating the cage between the hinge pin and the outer ring, (b) allowing the stops to perform the actual axial guidance of the cage, (c) positioning the cage with the outer ring stretching substantially only along the length of the roller bodies, and (d) separating the stops from the outer ring and attaching the stops to the connecting joint. The method also includes the step of attaching the lever to the tubular hinge pin by (a) placing the concavity in contact with the outside of the tubular pin, and (b) attaching the lever to the tubular pin by at least one fastener protruding out of the interior of the tube.
An object of the present invention is to provide that, in a joint bearing of the above-described art, the mass to be moved is held as small as possible. The task of the present invention is solved by a joint bearing between two structural elements from which the one is connected with the connecting joint and the other with the hinge pivot, suitably for warp knitting machines. An outer ring is pressed into the connecting joint and a cage is located between the hinge pin and the outer ring. The cage has cylindrical roller bodies and stops for the actual axial guidance of the cage. The outer ring is so thin-walled that after pressing in, its inner circumference must be reworked. Also, the outer ring only stretches along the length of the roller body, and the stops are attached to the connecting joint, separate from the outer ring.
Preferably by means of reducing the wall thickness and the shortened length of the outer ring, its mass is reduced. Furthermore, the dimensions of the connecting joint and thus its mass can therefore be kept smaller.
However, it is no longer ensured that the outer ring, because of its reduced wall strength, is still precisely round after being pressed in. Therefore, post-processing is necessary. This is easy to achieve since one is only concerned with a continuous cylindrical surface. Since the preferred outer ring of the connecting joint is supported and comprises a durable material, the joint bearing has a high load capacity and a long operating life.
The preferred sealing rings are of a readily available lubricating means and are used to form the stops; wherein the sealing rings provided to both ends of the cage form the stops. These preferred stops have a much lower mass than the stops heretofore provided to the outer ring.
In the further development, sealing rings are supported on the outer sides preferably by security rings, supported on the connecting joint; thus the stops are secured in their position by protective rings.
The preferred lubricating means has annular spaces at both ends of the cage for the storage of grease, wherein one is connected to the grease input port and the other to a grease exit port. This permits the joint bearing to take up a relatively large store of grease, so that one is able to operate with rather large service intervals. The annular-formed grease storage space utilizes the space saved by the shortening of the outer ring. By the means thereof, the grease is equally distributed over the entire roller body. During supplemental lubrication, the excess grease can be readily wiped off since it exits from the grease exit when the annular grooves are filled.
Utilizing preferred annular grooves, wherein the annular spaces are increased by annular grooves on the inner circumference of the connecting joint, the storage space for the grease reserve can be further increased.
The preferred valve has a valve opening that can open as a result of excess pressure in the lubricating means, thereby serving to ensure that the grease stor
Hannon Thomas R.
Karl Mayer textilmaschinenfabrik
Selitto Behr & Kim
LandOfFree
Joint bearing between two structural elements of warp... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Joint bearing between two structural elements of warp..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Joint bearing between two structural elements of warp... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2618256