Electrical computers: arithmetic processing and calculating – Electrical digital calculating computer – Particular function performed
Reexamination Certificate
2007-03-27
2007-03-27
Mai, Tan V. (Department: 2193)
Electrical computers: arithmetic processing and calculating
Electrical digital calculating computer
Particular function performed
C708S492000
Reexamination Certificate
active
10643972
ABSTRACT:
An objective is to obtain a Jacobian group element adder that can calculate addition in a Jacobian group of a Cabcurve at a high speed, and can enhance practicality of the Cabcurve.An algebraic curve parameter file A10, and Groebner bases I1and I2of ideals of a coordinate ring of an algebraic curve designated by this file A are input into an ideal composition section11to perform arithmetic of producing a Groebner basis J of an ideal product of the ideal generated by I1 and ideal generated by I2. In a first ideal reduction section12, arithmetic is performed of producing a Groebner basis J* of an ideal that is smallest in a monomial order designated by the file A among ideals equivalent to an inverse ideal of an ideal that J in the coordinate ring of the algebraic curve designated by the file A generates. In a second ideal reduction section13, arithmetic is performed of producing a Groebner basis J** of a ideal that is smallest in the monomial order designated by the file A among ideals equivalent to an inverse ideal of an ideal that this J* generates to output it.
REFERENCES:
patent: 6560336 (2003-05-01), Arita
patent: 6611597 (2003-08-01), Futa et al.
patent: 7003537 (2006-02-01), Tamura
patent: 7020776 (2006-03-01), Lauter et al.
patent: 7023990 (2006-04-01), Arita
patent: 7043015 (2006-05-01), Lauter et al.
S. Arita, “Algorithms for Computations in Jacobian Group ofCabCurve and Their Application to Discrete-Log Based Public Key Cryptosystems”, Japanese-version collection of The Institute of Electronics, Information and Communication Engineers, vol. J82-A, No. 8, (1999), pp. 1291-1299.
R. Harasawa et al., “A Fast Jacobian Group Arithmetic Scheme for Algebraic Curve Cryptography”, IEICE Trans. Fundamentals, vol. E84-A, No. 1, Jan. 2001, pp. 130-139.
Mai Tan V.
NEC Corporation
Sughrue & Mion, PLLC
LandOfFree
Jacobian group element adder does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Jacobian group element adder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Jacobian group element adder will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3760986